七年级数学教学设计
作为一名教师,时常需要准备好教学设计,借助教学设计可以更好地组织教学活动。那么优秀的教学设计是什么样的呢?下面是小编为大家收集的七年级数学教学设计,希望对大家有所帮助。
七年级数学教学设计1
教学目标
1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3,体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类
知识重点正确理解有理数的概念
教学过程(师生活动)设计理念
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出)。
问题1:观察黑板上的9个数,并给它们进行分类。
学生思考讨论和交流分类的情况。
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。
例如,对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5。1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数。(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数’。按照书本的说法,得出“整数”“分数”和“有理数”的概念。
看书了解有理数名称的由来。
“统称”是指“合起来总的名称”的意思。
试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
练一练
1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。
2,教科书第10页练习。
此练习中出现了集合的概念,可向学生作如下的说明。
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集。类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?也可以教师说出一些数,让学生进行判断。集合的概念不必深入展开。
创新探究
问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等
小结与作业
课堂小结
到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业
(1)必做题:教科书第18页习题1、2第1题
(2)教师自行准备本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
初中数学教学策略
一、激发学生的学习兴趣
兴趣是最好的老师。只有当学生对数学产生了极大兴趣的时候,教师所传授的知识才能够很快被学生吸收。虽然我国素质教育已经开展多年了,但是许多教师在讲课的时候还是很难进行启发式教学,往往将本来应该是十分生动的内容,以“填鸭式、满堂灌”的方式讲述。因此,教师一定要注意激发学生的学习兴趣,在讲授知识时多考虑一下自己讲授的知识以及教授的方法能否引发学生的兴趣。
激发学生的学习兴趣,教师可以做到以下几点:(1)设置问题情境,让学生积极思考,提高学生独立思考问题的能力,培养学生的逻辑思维能力。(2)利用多媒体进行教学。随着科学技术的进步,多媒体教学已经得到了普遍发展。通过多媒体教学教师可以将抽象的数学符号、枯燥的数学定理、复杂的证明过程呈现出来。这样就可以使学生获得一定感性思维。(3)向学生讲述一下关于数学的小知识或者是小故事,激发学生的学习兴趣。
比如,冀教版初中数学八年级上册第十六章的知识点是勾股定理,教师在讲勾股定理这一章时,可以向学生讲述一下古代人是怎样发现勾股定理的,或者是向学生讲述一下古代人是怎样将数学知识运用到生活中去的。再比如,第十五章的知识点是轴对称,教师可以列举一些体现轴对称特点的中国古代建筑物,比如说故宫的建筑模式。
二、建立民主平等的师生关系
素质教育要求师生之间是一种民主平等的关系,师生双方在教学内容上是传递与接受的关系;在人格上是平等关系;在社会道德上是相互促进的关系。教师在日常教学过程中一定要充分发扬民主,建立和谐的师生关系。比如,在数学课堂上,有学生认为教师有的地方讲的不对,然后在全班同学面前给教师提了出来。在这种情况下,教师应该大度宽容,首先应该表扬学生积极思考问题,其次,仔细考虑自己是否真的出错了。最后,如果有错要及时改正。在初中数学教学过程中,教师应该充分调动学生的积极性和主动性,形成互动、互惠的师生关系。
三、建立多元化的教学目标
教学目标具有激励、导向、评价作用,对教师的教学和学生的学习都具有十分重要的作用。教师在设置数学教学目标的时候,要注意将知识与能力、过程与方法、情感态度与价值观紧密结合起来。数学教学不仅要注意问题的解决,也要关注学生的思维过程。教师要成为学生学习的指导者和促进者,不仅要注重学习的结果,更要注重学生学习的过程。教师要合理运用教学方法教学方法的设计应该遵循多样性、灵活性、综合性、创新性的原则。在选择教学方法时,教师应该依据教学规律和教学原则。
除此之外,教师在选择教学方法时要依据学生的学习特点,要符合学生的身心发展规律。同时还要依据教学的组织形式、时间、设备条件进行教学方法的选择。由于中学生的注意力还不是特别集中,在一节课中只运用一种教学方法会使学生产生疲惫和倦怠,因此,教师在讲授过程中应该综合运用多种教学方法,以引起学生的注意力和积极性。比如,在学习《命题与证明》这一章时,教师应该采用讲授法、谈话法、练习法等,这样既可以使学生掌握一定的新知识又能够及时掌握新知识,同时又激发了学生学习的积极性和主动性。教师在教学中应多采用启发式教学。所谓启发式教学就是教师要承认学生的主体地位,充分调动学生的学习积极性和主动性,引导学生独立思考、积极探索,生动活泼地学习,自觉地掌握科学知识,提高分析问题、解决问题的能力。初中教师在教学过程中,一定要时刻注意启发学生的思维。这样才能够激发学生的学习兴趣,使课堂变得生动、有趣。只有当学生对数学产生了极大兴趣的时候,教师所传授的知识才能够很快被学生吸收。
四、总结
综上所述,在初中数学教学过程中要运用恰当、科学的教学策略。教师一定要根据学生的实际情况,根据教材的具体内容制定科学的教学策略,以提高教学质量和学生学习的质量。教师在进行教学时一定要遵循直观性原则、因材施教原则、理论联系实际原则、科学性等原则。教学策略是多种多样的,比如激发学生的学习兴趣;树立多元化的教学目标;建立民主平等的师生关系等。教师一定要跟随教育改革的步伐,跟随时代的潮流,积极探索教学之路,提升数学教学水平,培养出高素质的学生。
七年级数学教学设计2
面向21 世纪的数学教学的理念是“人人学有用的数学,有用的数学应当为人人所学,不同的人学不同的数学”,“数学教育应努力激发学生的学习情感,将数学与学生的生活、学习联系起来,学习有活力的、活生生的数学”。 数学教材,最显著的是不再追求学科本身的完备性和知识的覆盖面,而且符合新课标中的“不仅考虑了数学自身的特点,更遵循了学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲自经历,将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面都得到进步和发展”,这样即把教材的中心价值转移到了学生怎样使用教材上,而且赋予教材中的知识内容以更多的价值观,以利于学生形成积极主动的学习态度,关注学生的学习兴趣和经验。教材中,每一章节的课题,无不体现了以学生的发展为本的基本观念。七年级数学上册是一个全新的体系,与以往的数学课本完全不同。学生的感觉是插图精美、问题有趣、惊喜连连、引人入胜,但老师的感觉却是千头万绪,难分重点难点,更不知知识讲解的“度”在哪里?作为一个老教师如何根据教材的特点,把枯燥的数学变得有趣、生动、易于理解,让学生活学、活用,从而培养学生的创新精神与实践能力呢?通过反复思考,我就从课堂教学入手,联系生活实际讲数学;把生活经验数学化,把数学问题生活化。一个学期教下来,感慨颇多,对这本教材开始有一点了解、有一点欣赏,同时希望利用这套教材将自己的数学教学工作完善起来,积累更多的经验。 对教学的理解是:教学过程是师生交流、共同发展的主动过程,强调师生交流,构建互动的师生关系、教学关系,是教学改革的首要任务。
初一学生首次接触初一数学这门课的时候,教师应该给学生创造一个良好的数学环境为以后的数学教学开个好头,打好基础。
1、第四章“图形认识初步”给教师提供了一个良好的数学环境的素材,教材中每一小节的课题都是那么亲切、有趣,插图、想一想、做一做、读一读、试一试无不吸引着学生参与其中,感受着探索、创造、求知、合作的美。要教好这一章,教学方法和形式都与以往的教学不同,要做好充分的准备。这准备是多方面的,首先熟悉教材,把握教材编写的意图:吸引学生、激发学生学习数学的兴趣。在教学中给学生动手操作的时间和空间,给他们展示自己探索、发现的过程和平台,充分的肯定和鼓励他们,使他们树立学好数学的信心。其次,要准备好教具、课件、学具,这一章的学习需要很多实物、模型、图片,还有许多需要老师带领学生课堂实践的操作,如叠一叠、做一做、试一试等,这些需要老师提前布置预习,有的要求学生回家准备,有的需要老师准备好在课堂上提供给学生使用,这些工作十分繁琐、费时,教师必须落实,否则会影响上课的效果。教师布置任务时要求清晰、到位,再给予相应的评价和鼓励,不但学生准备学具时积极,形成良好预习习惯,而且,课堂学生参与度和积极性都很高,课堂效率会有很大的提高。在较为抽象的内容如:从不同方向看这节教学中,学生准备学具就显得尤为重要了。在学生动手操作的基础上,利用了多媒体课件,显示用一个平面截正方体、圆柱体、圆锥体时的截面情况,画面清晰美丽又富于趣味性,给学生带来很大的乐趣,同时达到了把抽象问题具体化的功效。学生在学习“从不同的方向看”时,从立体图形到平面图形的转化感到困难,我感到光是讲解难以达到好效果,所以,借助实物帮助学生突破思维和学习上的障碍,收效很好。在生活中的图形一课中,我收集了很多美丽图片在电脑中,上课时投影给学生,让他们找出熟悉的几何图形,这些都极大的调动了学生学习的兴趣和积极性,收到很好的效果。 教学过程中,要处理好传授知识与培养能力的关系,注重培养学生的独立性和自主性。引导学生质疑、调查、探究,在实践中学习,使学习成为在教师指导下主动的、富有个性的过程。教师应尊重学生的人格,关注个体差异,满足不同的需要,创设能引导学生主动参与的教学环境,激发学生的学习积极性,培养学生掌握和运用知识的态度和能力,使每个学生都得到充分的发展。如有理数的混合运算一直是学生学习的难点,也是学生最不愿意参与的课程,在教授这一部分时设计了一个卡片游戏,使学生在游戏中编混合运算的题,同时计算。学生的热情和积极性空前高涨,在分小组竞赛时,大家分工协作、积极配合、努力取胜,使许多我认为难以编出的题,不但很快编出,而且迅速准确、多解,令我叹为观止,感慨万分。
2、足球比赛、一张纸对折20 次、24 点游戏、用火柴棒搭正方形等,这些事例都是同学们很感兴趣的,所以他们特别想知道结果,从而自己主动地去看书、学习,从而努力去发现、探索,获得知识。这是新课标数学教学带给我的一个启示:乐学,顾名思义,就是让学生乐意学习,即让学生在快乐和谐的气氛中积极、主动地去获取知识。只要学生愿意和乐意做的,就没有难得、不会的,教师唯一要做的就是让学生在课堂上动起来。教学过程是交往,教师与学生都是教学过程的主体。在教学过程中,强调是师生间、学生间的动态信息交流,这种信息包括知识、情感、态度、需要、兴趣、价值观等方面以及生活经验、行为规范等。通过这种广泛的信息交流,实现师生互动、相互沟通、相互影响、相互补充。
3、在探究销售 中的盈亏这一问题时,充分体现师生互动、相互沟通、相互影响、相互补充,教师提出问题,师生共同解决。传统的教学方式,是教师将知识系统地讲清楚、讲明白,学生能听清楚、听懂,然后记忆、运用到解题、论证,考试中,忽略了学生的体验和感受,对学生来说是单纯的接受式学习,在这种学习中,学习内容是以定论的形式直接呈现出来的,而现在提倡的是发现学习,在发现学习中,学习的内容是以问题的形式间接呈现出来的,学生是知识的发现者。这是从七年级数学教学带给我的又一个启示 。 转变学生的学习方式,要以培养创新精神和实践能力为主要目的,换句话说,要构建旨在培养创新精神和实践能力的学习方式和教学方式,要注重培养学生的科学思维品质,鼓励学生对书本的质疑和对教师的超越,赞赏学生富有个性化的理解和表达,要积极引导学生从事实验活动和实践行动,培养学生勤于动手,勇于实践的意识和习惯。
4、在学科活动中我们针对教材中内容,利用简单的几何图形(两个圆、两个三角形、两条平行线)为构件,构思出一副独特且有意义的图形,并配以贴切、幽默的解说词。通过课堂上的分组讨论和集体创造,学生在参与的过程中积极主动、兴趣高涨,课堂的授课效果也很理想,有的学生甚至设计了两、三个图案,所设计出的图形也很有意义,充分体现了他们的想象力和创造力。
教师在鼓励学生探索有关数学问题的过程中,要善于发现学生的亮点,对他们实施激励性评价,使他们自觉克服学习中的各种困难,用顽强的意志、坚韧的毅力去解决一个又一个问题,从而体验到探索成功带来的欢乐。在数学教学中,当学生取得点滴进步时,教师一脸真诚的微笑、投以信任的目光、赠给热烈的祝贺等,会给予他们精神上的激励。当学生经过努力暂时没有取得成功时,如果教师投以期待的目光、赠给温馨的话语,会给予他们精神上的鼓励。 以上是我在探索中一些实例。我的想法和做法是:“生活经验(解决)数学问题(获得)数学知识(解决)实际问题”旨在使数学教学更贴近学生的生活,使学习变得有趣、生动、易懂,并会把数学知识运用于实践,使数学变得更有活力。
七年级数学教学设计3
教学内容
义务教育课程标准实验教科书人教版《数学》 二年级上册第三单元第38-39页例1-例2.
设计思路
1.指导思想
《角的初步认识》这节课是在学生已初步认识长方形、三角形、正方形的基础上进行教学的。它们与实际生活有密切的联系,我们周围很多物体上有角。因此,让学生通过实践操作活动,在初步感知角的基础上进一步认识角、了解角的特征。
2.设计理念
通过学习,使学生初步认识角,知道角的各部分名称,会用不同的方法画角和比较角的大小。通过感知角 —找角—摸角—画角—分辨角—做角、玩角—创造角等操作活动,给学生提供“做数学”的机会,让学生在动手操作、合作交流中体验成功的喜悦。
3.教材分析
这节课是人教版《数学》 二年级上册第三单元第一课时内容,教材从引导学生观察生活中的角及实物开始逐步抽象出所学图形的角,再通过实践操作活动加深对角的认识,使学生建立角的表象,为下节课认识直角做好准备。同时,这部分知识发展学生的空间观念,想象力和操作能力。
4.学情分析
在初步感知角的基础上,通过实践操作,获取直接经验,为形成角、直角的空间观念奠定基础。
教学目标
知识与技能:结合生活情境,使学生初步认识角,能够识记和理解各部分名称,会用不同的方法画角和比较角的大小。
过程与方法:通过观察,操作等数学活动,培养学生的观察能力、实践能力、抽象能力,建立初步的空间观念,发展学生的形象思维。
情感、态度、价值观:通过实践活动,使学生获得成功的体验, 建立自信心,感悟生活与数学的密切联系,激发学习数学的兴趣。
教法与学法
教法:尝试指导法。
学法:动手实践,自主探究。
教学重点、难点
重点:根据角的特征辩认角。
难点:角的大小与边的长短没有关系。
教具准备
课件、三角板、图钉、硬纸条、剪刀、扇子等。
学具准备
三角板、硬纸条、图钉、圆形纸片、长方形纸、剪刀。
教学过程
一、创设情境,激趣导入
师:同学们猜猜我们这节课将要学什么?
生1:可能与角有关。
师:你是怎么知道的?
生1:因为老师让我们带了三角板,我想可能与角有关吧。
……
师:在生活当中你看到过或听说过哪些角吗?
生2:硬币上有角。
生3:红领巾上有角。
生4:三角板上有角。
……
师:硬币上的角和我们今天学的角可不一样,我们今天要研究的角是数学意义的角,数学中的角究竟是怎样的呢?我们一起到校园里去看看吧。
【设计意图:从学生的生活经验出发,创设问题情境,让学生感受到数学就在我们的身边,激发学生求知的欲望。】
二、初步感知,探究新知
(课件出示主题图)新的一天开始了,校园里早早就热闹起来,操场上更是生机勃勃,你们看到了什么?这里面有角吗?先说给你的同桌听一听,然后说给同学们听。
生1:老师拿的三角板。 生2:老爷爷修剪花木用的剪刀。
生3:小朋友做操时伸的直直的双臂。
……
师:真是一群善于观察的好孩子。是啊,角在我们的生活当中无处不在,这节课我们就一起来认识这位“新朋友”。(板书:角的初步认识)
三、自主探索、感悟新知
1.联系实际,感知角
师:角特别喜欢玩捉迷藏的游戏,老师带来了几幅图,你们能找出来吗?课件出示钟表、剪刀、饮料吸管、窗户等图片,指几名学生找角,根据学生的回答屏幕上的红色线闪烁显出角。
师:同学们的眼睛真亮啊,把藏在物体里的角都找出来了。
2.找生活中的角
师:其实我们的身边还有很多角,仔细观察你就会发现周围哪些物体表面也藏有角?把你找到的角指给同桌看一看.(生活动)
师 :谁愿意把你找到的角与大家一起分享?
生:黑板上、桌子上、数学书上、窗户上……
师:你们真是生活中的有心人!角在我们的生活中真是太广泛了,只要你们用数学的眼光去观察,就能发现更多的角。
【设计意图:让学生从生活中发现角、认识角并从实例中抽象出角的图形,建立角的表象,体会到生活中处处有数学的思想,获得用数学的体验。】
3.摸角(认识数学中的角)
师:请同学们拿出三角板,先摸一摸再看一看角是怎样的?
生1:角的前面尖尖的,旁边直直的。
生2:它是由两条直线组成。
师:嗯,观察得很仔细,现在请同学们用角尖尖的地方在手心扎一下,看看手心上留下了什么?
生:一个小圆点。
师:它是角的一个组成部分,数学家给它起了个名字叫“顶点”,课件出示小圆点,这就是一个角了吗?
生:不是,还有两条直直的线。(演示)
师:这两条直直的线,数学家也给它起了个名字叫“边”。这就是数学王国中的“角”,让我们给刚才这些实物脱掉美丽的外衣,就变成这样。(课件隐去实物图出现几个大小不同的角)请仔细观察,这些角有什么相同的地方?
生:他们都有一个顶点两条边。
师:也就是说角是由一个顶点两条边组成的。
4.画角
师:刚才我们已经认识了角的特征,你们会画角吗?课件演示画角的过程。
师:请拿出三角板,按刚才的方法画一个自己喜欢的角。
指几名生上黑板画,画好后让生评价。
5.分辨角
师:现在请同学们闭上眼睛想一想角是怎样的?帮我辩一辩哪些图形才是角家族的朋友?
下面图哪些是角?哪些不是角? 为什么?
《角的初步认识》教学设计《角的初步认识》教学设计《角的初步认识》教学设计
《角的初步认识》教学设计《角的初步认识》教学设计
生辨认并说理由
师:了不起的小法官!刚才同学们已经会画角了也会辨认角了,你们会做角吗?
6.做角玩角
拿出准备的硬纸条和图钉开始做角吧,做好以后再玩一玩看谁的角大谁的角小?(生活动并玩角)
师:说说看,你们发现了什么?
生:两根塑料带张开一些角就越大,合拢一些角就越小。
师:怎样用数学语言说呢?
根据学生的回答归纳:角的两边拉开的大角就大,角的两边拉开的小角就小。
师:你们真会发现。老师也带来了两样东西请看看吧,出示扇子、剪刀演示。
课件出示:角的大小与什么有关?
小结:角的两边张开的大角就大,角的两边张开的小角就小。
7.猜角
《角的初步认识》教学设计师:看看谁能猜出这两个角的大小?
《角的初步认识》教学设计
师:究竟谁大?生猜后课件动画演示两个角的顶点和边重合,发现角一样大。
小结:角的大小与边的长短没有关系,而与角的张口大小有关。
8.创造角
师:刚才同学们对角已经有了很深的了解,那么你们会创造角 吗?请拿出准备的圆形纸片,看看用哪些方法可以创造出角?
(生活动,有折、有剪、有撕、有画……)全班欣赏评价。
【设计意图:练习融趣味性、创造性于一体。通过实践活动,使学生亲历探究的过程,激发了学生的'想象力,培养他们的动手操作能力和思维能力。】
四、巩固拓展
师:看同学们表现得这么出色,老师想考考你们,敢接受挑战吗?
1.下面的图形个有几个角?
《角的初步认识》教学设计《角的初步认识》教学设计《角的初步认识》教学设计
《角的初步认识》教学设计《角的初步认识》教学设计
2.摆一摆两根小棒能摆出几个角?三根呢?你们能用自己的身体表示出一个角来吗?
3.一张长方形的纸有几个角?如果剪掉一个角还有几个角? 【设计意图:通过层次深度的练习设计,既培养学生运用知识解决实际问题的能力,又发展了学生的思维。】
五、升华主题,欣赏美
师:同学们角不仅在数学中被广泛应用,古今中外许多建筑都利用了角的特性,下面就让我们一起来感受他们的神奇魅力吧。
(伴随悠扬的音乐欣赏古建筑)
【设计意图:欣赏古代建筑,提高了学生的审美能力,感受到几何图形的美,增强热爱数学、学好数学的信心。】
六、总结全课
1.这节课你对自己的表现满意吗?对老师满意吗?
2.通过这节课的学习你有哪些收获? 生畅所欲言
师:这节课同学们不仅认识了角的形状,知道了角有一个顶点, 两条边,还学会了画角。今后,我们将会学习更多关于角的知识,在角的王国里探究更多的奥秘。回家以后,找一找家中的角说给你的爸爸妈妈听,好吗?
【设计意图:让学生自我评价和对老师的评价,凸显个性,展现自我,增强自信,培养学生学习数学的能力。】
教学反思
反思这节课,我能努力实践着新课程的理念。这节课的尝试主要体现以下几方面的特点:
⑴关注生活经验,重视实践操作,让学生经历角的含义的形成过程,激发学生学习的兴趣。本节课先让学生说说在生活当中看到过或听说过哪些角,充分调动学生的生活经验,然后在找角—摸角—画角—分辨角等活动中建立了角的表象,丰富了对角的认识,真正体现了“让学生亲身经历,将实际问题抽象成数学模型的过程”这一基本理念。使他们在“做数学”的过程中不仅获取了知识,培养了动手操作能力,还发展了学生的思维,使他们在亲历的过程中感受到学习的乐趣。
⑵充分发挥学生的主体作用,及时评价学生的学习成果。
在教学过程中,教师向他们提供充分的从事数学活动和交流的机会,帮助他们在自主探索的过程中真正理解和掌握角的基本特征,突出学生的主体地位。及时评价学生让他们一起体验成功的喜悦,使他们真正成为学习的主人。
⑶利用学具和多媒体等教学手段,调动学生的多种感官,强调数学学习的实践性、探究性和趣味性,注重了学生的情感体验和个性发展。提高了学生的审美能力,感受到几何图形的美,最大限度发挥学生积极参与学习的过程,从而使课堂真正焕发生命活力。
不足:
⑴时间把握不够准确,预设的活动没有按时完成。
⑵教师的教学语言不够精练。
七年级数学教学设计4
教学建议
一、知识结构
二、重点、难点分析
本节的重点是:单项式乘法法则的导出.这是因为单项式乘法法则的导出是对学生已有的数学知识的综合运用,渗透了“将未知转化为已知”的数学思想,蕴含着“从特殊到一般”的认识规律,是培养学生思维能力的重要内容之一.
本节的难点是:多种运算法则的综合运用.是因为单项式的乘法最终将转化为有理数乘法、同底数幂相乘、幂的乘方、积的乘方等运算,对于初学者来说,由于难于正确辩论和区别各种不同的运算以及运算所使用的法则,易于将各种法则混淆,造成运算结果的错误.
三、教法建议
本节课在教学过程中的不同阶段可以采用了不同的教学方法,以适应教学的需要.
(1)在新课学习阶段的单项式的乘法法则的推导过程中,可采用引导发现法.通过教师精心设计的问题链,引导学生将需要解决的问题转化成用已经学过的知识可以解决的问题,充分体现了教师的主导作用和学生的主体作用,学生始终处在观察思考之中.
(2)在新课学习的例题讲解阶段,可采用讲练结合法.对于例题的学习,应围绕问题进行,教师引导学生通过观察、思考,寻求解决问题的方法,在解题的过程中展开思维.与此同时还进行多次有较强针对性的练习,分散难点.对学生分层进行训练,化解难点.并注意及时矫正,使学生在前面出现的错误,不致于影响后面的学习,为后而后学习扫清障碍.通过例题的讲解,教师给出了解题规范,并注意对学生良好学习习惯的培养.
(3)本节课可以师生共同小结,旨在训练学生归纳的方法,并形成相应的知识系统,进一步防范学生在运算中容易出现的错误.
教学设计示例
一、教学目的
1.使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算.
2.注意培养学生归纳、概括能力,以及运算能力.
3.通过单项式的乘法法则在生活中的应用培养学生的应用意识.
二、重点、难点
重点:掌握单项式与单项式相乘的法则.
难点:分清单项式与单项式相乘中,幂的运算法则.
三、教学过程
复习提问:
什么是单项式?什么叫单项式的系数?什么叫单项式的次数?
引言 我们已经学习了幂的运算性质,在这个基础上我们可以学习整式的乘法运算.先来学最简单的整式乘法,即单项式之间的乘法运算(给出标题).
新课 看下面的例子:计算
(1)2x2y·3xy2; (2)4a2x2·(—3a3bx).
同学们按以下提问,回答问题:
(1)2x2y·3xy2
①每个单项式是由几个因式构成的,这些因式都是什么?
2x2y·3xy2=(2·x2·y)·(3·x·y2)
②根据乘法结合律重新组合
2x2y·3xy2=2·x2·y·3·x·y2
③根据乘法交换律变更因式的位置
2x2y·3xy2=2·3·x2·x·y·y2
④根据乘法结合律重新组合
2x2y·3xy2=(2·3)·(x2·x)·(y·y2)
⑤根据有理数乘法和同底数幂的乘法法则得出结论
2x2y·3xy2=6x3y3
按以上的分析,写出(2)的计算步骤:
(2)4a2x2·(—3a3bx)
=4a2x2·(—3)a3bx
=[4·(—3)]·(a2·a3)·(x2·x)·b
=(—12)·a5·x3·b
=—12a5bx3.
通过以上两题,让学生总结回答,归纳出单项式乘单项式的运算步骤是:
①系数相乘为积的系数;
②相同字母因式,利用同底数幂的乘法相乘,作为积的因式;
③只在一个单项式里含有的字母,连同它的指数也作为积的一个因式;
④单项式与单项式相乘,积仍是一个单项式;
⑤单项式乘法法则,对于三个以上的单项式相乘也适用.
看教材,让学生仔细阅读单项式与单项式相乘的法则,边读边体会边记忆.
利用法则计算以下各题.
例1 计算以下各题:
(1)4n2·5n3;
(2)(—5a2b3)·(—3a);
(3)(—5an+1b)·(—2a);
(4)(4×105)·(5×106)·(3×104).
解:(1) 4n2·5n3
=(4·5)·(n2·n3)
=20n5;
(2) (—5a2b3)·(—3a)
=[(—5)·(—3)]·(a2·a)·b3
=15a3b3;
(3) (—5an+1b)·(—2a)
=[(—5)·(—2)]·(an+1·a)b
=10an+2b;
(4) (4·105)·(5·106)·(3·104)
=(4·5·3)·(105·106·104)
=60·1015
=6·1016.
例2 计算以下各题(让学生回答):
(3)(—5amb)·(—2b2);
(4)(—3ab)(—a2c)·6ab2.
=3x
www。xuehuiba。com
3y3;
(3) (—5amb)·(—2b2);
=[(—5)·(—2)]·am·(b·b2)
=10amb3
(4)(—3ab)·(—a2c)·6ab2
=[(—3)·(—1)·6]·(aa2a)·(bb2)·c
=18a4b3c.
小结 单项式与单项式相乘是整式乘法中的重要内容,它的运算法则的导出主要依据是,乘法的交换律与结合律以及幂的运算性质.
七年级数学教学设计5
教学目标
1、掌握相反数的概念,进一步理解数轴上的点与数的对应关系;
2、通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;
3、体验数形结合的思想。
教学难点
归纳相反数在数轴上表示的点的特征
知识重点相反数的概念
教学过程
(师生活动)设计理念
设置情境
引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类
4,—2,—5,+2
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和—5,+2和—2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)
思考结论:教科书第13页的思考
再换2个类似的数试一试。
归纳结论:教科书第13页的归纳。以开放的形式创设情境,以学生进行讨论,并培养分类的能力
培养学生的观察与归纳能力,渗透数形思想
深化主题提炼定义给出相反数的定义
问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?
学生思考讨论交流,教师归纳总结。
规律:一般地,数a的相反数可以表示为—a
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。
深化相反数的概念;“零的相反数是零”是相反数定义的一部分。
强化互为相反数的数在数轴上表示的点的几何意义
给出规律
解决问题问题3:—(+5)和—(—5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和—5的相反数是—5和+5
练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法
小结与作业
课堂小结
1、相反数的定义
2、互为相反数的数在数轴上表示的点的特征
3、怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业
1、必做题教科书第18页习题1.2第3题
2、选做题教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1、相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征。这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距、相等等性质均有广泛的应用。所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想。
2、教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法。
3、本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地。
七年级数学教学设计6
5.4平移
教学目标:
1、了解平移的概念,会进行点的平移,理解平移的性质,能解决简单的平移问题
2、培养学生的空间观念,学会用运动的观点分析问题。
重点:平移的概念和作图方法。
难点:平移的作图。
教学过程
一、观察图形形成印象
生活中有许多美丽的图案,他们都有着共同的特点,请同学们欣赏下面图案。
观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?学生思考讨论,借助举例说明。
二、提出新知实践探索
平移:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。(2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点。(3)连接各组对应的线段平行且相等。图形的这种变换,叫做平移变换,简称平移
探究:设计一个简单的图案,利用一张半透明的纸附在上面,绘制一排形状,大小完全一样的图案
引导学生找规律,发现平移特征
三、典例剖析深化巩固
例如图,(1)平移三角形ABC,使点A运动到A`,画出平移后的ΔABC
先观察探讨,再通过点的平移,线段的平移总结规律,给出定义
探究活动可以使学生更进一步了解平移
四、巩固练习课本33页:1,2,4,5,6,7
五、小结:在平移过程中,对应点所连的线段也可能在一条直线上,当图形平移的方向是沿着一边所在直线的方向时,那么此边上的对应点必在这条直线上。2利用平移的特征,作平行线,构造等量关系是接7题常用的方法。
六、作业课本P30页习题5。4第3题
七年级数学教学设计7
教学目标
理解两个完全平方公式的结构,灵活运用完全平方公式进行运算。
在运用完全平方公式的过程中,进一步发展学生的符号演算的能力,提高运算能力。
培养学生在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的见解。
重点难点
重点
完全平方公式的比较和运用
难点
完全平方公式的结构特点和灵活运用。
教学过程
一、复习导入
1. 说出完全平方公式的内容及作用。
2. 计算 ,除了直接用两数差的完全平方公式外,还有别的方法吗?
学生思考后回答:由于两数差可以转化成两数和,所以还可以用两数和的完全平方公式计算,把“ ”看成加数,按照两数和的完全平方公式计算,结果是一样的。
教师归纳:当我们对差与和加以区分时,两个公式是有区别的,区别是其结果的中间项一个是“减”一个是“加”,注意到区别有助于计算的准确;另一方面,当我们对差与和不加区分,全部理解成“加项”时,那么两个公式从结构上来看就是一致的了,其结构都是“两项和的平方,等于它们的平方和,加上它们的积的两倍。”注意到它们的统一性,有于我们更深刻地理解公式特点,提高运算的灵活性。
我们学习运算,除了要重视结果,还要重视过程,平时注意训练运算方法的多样性,可以加深对算理的理解和运用,提高运算过程的合理性和灵活性,从而真正的提高运算能力。
二、新课讲解
温故知新
与 , 与 相等吗?为什么?
学生讨论交流,鼓励学生从不同的角度进行说理,共同归纳总结出两条判断的思路:
1.对原式进行运算,利用运算的结果来判断;
2.不对原式进行运算,只做适当变形后利用整体的方法来判断。
思考:与 , 与 相等吗?为什么?
利用整体的方法判断,把 看成一个数,则 是它的相反数,相反数的奇次方是相反的,所以它们不相等。
总结归纳得到: ;
三、典例剖析
例1运用完全平方公式计算:
(1) ; (2)
鼓励学生用多种方法计算,只要言之成理,只要是自己动脑筋发现的,都要给予肯定,同时还要引导学生评价哪种算法最简洁。
例2计算:
(1) ; (2) .
例3 计算:
(1) ; (2)
训练学生熟练地、灵活地运用完全平方公式进行运算,进一步渗透整体和转化的思想方法。
四、课堂练习
1.运用完全平方公式计算:
(1) ; (2) ;
(3) ; (4)
2.计算:
(1) ;(2) .
3. 计算:
(1) ; (2)
学生解答,教师巡视,注意学生的计算过程是否合理,组织学生对错误进行分析和点评。
五、小结
师生共同回顾完全平方公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
六、布置作业
P50第2(3)、(4),3题
七年级数学教学设计8
一、教学目标设计
[知识与技能目标]
1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。
2、通过应用绝对值解决实际问题,体会绝对值的意义和作用。
[过程与方法目标]
限度的发挥学生的主体参与,让学生在教师的引导启发,师生的交流与探索下,轻松愉快地学到新知识。
[情感态度与价值观]
借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想,让学生采取自主探索,合作交流的学习方式。
二、教材解读
借助数轴引出对绝对值的概念,并通过计算、观察、交流、发现绝对值的性质特征,利用绝对值来比较两个负数的大小。
让学生直观理解绝对值的含义,不要在绝对值符号内部出现多重符号和字母,多鼓励学生通过观察、归纳、验证。
三、教学过程设计与分析
一、情境导入
[课件展示,激趣感知]
博物馆、农场到学校与学校到博物馆农场的距离的关系。
[媒体展示课件,认知生活中的有些问题]
不考虑相反意义,只考虑具体数值。
[创设情境,实例导入]利用动画展示,让学生在有趣的图画中感受绝对值激发学生的兴趣。
实物的形象符合学生心理,学生兴趣很高,踊跃发言,95%的学生能顺利的解决问题。
师生互动
[提出问题,引发讨论]
1、引导学生得出绝对值定义及表示方法。
2、同桌之间互相举例。
[展示:启发学生交流了解绝对值]
归纳绝对值概念,教师指出表示方法。
[师生互动、探索新知]:学生根据情境感知初步认知绝对值,并通过对其概念的理解求解一个数的绝对值。
同桌之间举例,效果良好,体现了“自主——协作”学习。
阅读课文,互动探索
求解各数的绝对值后讨论
1、想一想互为相反数的两个数的绝对值有什么关系?学生举例,并进行观察、比较、归纳。
2、议一议一个数的绝对值与这个数有什么关系?小组讨论、交流教师引导学生用自己的语言描述所得结论教师质疑:一个数的绝对值是否为负数?学生通过分析理解绝对值的内在涵义。
阅读课文:从各数的绝对值归纳绝对值的代数意义。
[阅读课文:“想一想]提出问题,引起学生的思考。
[阅读课文:“议一议]
学生分析各类数的绝对值与本身的关系,并对教师的质疑进行深究。
[趣引妙答,思路点拨]通过学生举例思考,对互为相反数的两个数的绝对值进行观察对比,从而得到它们的关系。
学生从“特殊——一般”分类归纳绝对值的代数意义,并通过归纳总结出绝对值的内在涵义,体现学生的主体性。
积极调动学生的思维,使学生在协商、讨论中将问题逐渐明朗化、具体化,在共享集体思维成果的基础上达到对当前所学内容比较全面、正确的理解。
3、做一做
[激趣探知]
教师出示过关题目
学生通过自主探索最终找到两个负数比较大小的方法,绝对值大的反而小。
师生归纳两页数比较大小的两种方法。
[探索用绝对值比较两负数的方法]
体验概念的形式过程
旧知识的引用,让学生在轻松愉快的环境中获取新知,从已有知识逐渐到新知识,不但可激发学生的兴趣,并且培养学生的探索精神,同时分解了本节的难点。
从旧知识层层引入,学生兴趣十足,提高了教学效果,突破了难点,学生接受轻而易举。
巩固练习
[绝对值比较两负数大小的运用]
情境:比较下列每组数的大小。
[媒体展示,出示习题]:
运用绝对值比较负数大小。
[变成训练,巩固反馈]
继续对绝对值比较负数大小进行巩固练习。
由以上练习层层深入,学生解决问题的能力大大提高,并且印象深刻。
知识延伸
[学生探究,教师点拨]
[媒体展示]
绝对值定义,代数意义及内在涵义的的灵活应用。
[知识延伸,目标升华]
充分发挥学生的自主探索能力,使学生能够深入、细致的理解知识点。
学生能够互相评点,共同探索,既发展了自主学习能力,又强化了协作精神。
七、教学板书设计
绝对值
概念正数的绝对值是它本身
绝对值代数意义0的绝对值是0非负数
表示方法| |负数的绝对值是它的相反数
如:|—2|=2 |+3|=3绝对值最小的数是0
七年级数学教学设计9
教学目标:
知识与能力:结合生活实际,直观认识平面图形中的角,培养观察能力、动手操作能力及合作学习能力。
过程与方法:通过“折一折”“摸一摸”“认一认”“比一比”“找一找”等活动引导学生直观认识角。
情感态度与价值观:体会数学与生活的密切联系,激发学生学习数学的信心和兴趣。
教学重点:通过实践活动对角有直观认识,会比较两个角的大小。
教学难点:知道角的大小和角两边的张口有关,和角两边的长短无关。
教具准备:多媒体课件、各种形状的纸、活动角、小棒、三角板、剪刀、扇子等。
学具准备:各种形状的纸、活动角、小棒、三角板、
教学过程:
一、创境引入,观察发现
小朋友们,看今天老师给你们带来了,一位老朋友——米老鼠。今天它也来到了我们的课堂(课件米老鼠),米老鼠刚刚用积木搭建了一座房子,(课件出示一座房子图片)请同学们仔细观察米老鼠搭建的一座房子,是我们以前学过的那些图形?(课件出示长方形、正方形、三角形,圆形)。米老鼠想蒙上同学们的眼睛,你们能摸出圆形来吗?指一名学生上台来摸。学生摸出后,加以激励。随后提问:如果让你们来摸你也能摸出来吗?(生齐答:能!)
师:你们都这么确定能摸出圆来,请问有什么窍门吗?
(学生答:因为别的图形都有角,可是圆边上都是滑滑的,没有角。)
师:同学们真有办法!这节课我们就来认识这个新朋友“角”,角也是平面王国里的一个成员。(板书:认识角)
出示课题《认识角》
二、动手动脑、探究新知
1、 摸角把你的三角尺拿出来,摸一摸,说说你的感觉,当三角尺的角碰到我们手心时会很疼,会留下一个点,这个点就是角的顶点(板书),再摸两边直直的,平平的,这就是角的两条边(板书)
2、画角师:(教师边示范边讲解)下面看一看老师怎样画角?先画一点,(即角的顶点),再从这点出发画两条直直的线(即角的两条边),再在里面画一条弧线,就成了角。(教师分别在黑板上画出)
为了让同学们更好的记住角,老师还编了几句顺口溜呢!
小小角,真简单,一个顶点两条边.
3、找角(课件出示例题情境图) 师:同学们看一看,你能在哪些物体的面上找到角?
(学生自由的找角,并全班进行交流。)
师:将这些物体面上的角移下来就成了数学上的“角”。(教师边说边点击课件从剪刀、扇子、闹钟上抽象出角。) 在生活中,在学习中,在我们的身上也有角,你能找到吗?学生自由说。
4欣赏角老师也发现了很多角,你们想看看吗?课件出示,
5、练习⑴辨一辨:调皮的米老鼠也做了几个角,我们来判断一下这些图形哪些是角,哪些不是角。先仔细观察,之后快速用手势做出判断。
判断时让学生说一说是怎样判断的。在追问:你能指出角的顶点和边吗?
(2)“想想做做”的第2题。
数一数下面图形中共有几个角,并让学生指一指
二、小组合作,积极参与,
1、比角
嘘!听,是谁在吵架?原来是∠1和∠2吵了起来。他们都说自己大,你认为谁大?为什么?这样吧,同桌俩一个做∠1,一个做∠2,比一比,看看到底谁大?谁来说一说他们俩谁大?你是怎么比出来的?(学生介绍方法)请同学们把手中的角放好,我们就用他教给我们的方法来比一比(课件)把∠1和∠2的顶点重合,一条边对齐,看另一条边。另一条边在外面的,这个角就大。
⑶∠1和∠2终于不吵了,可是老师这里有两个三角板也打了起来!黄三角板说:“我的这个角大!”红三角板说:“你的角小,我的这个角大!”同学们你说哪个角大?同意黄三角板上这个角的同学请举手,同意红三角板上这个角大的同学举手,还有不同意的吗?那么它们到底谁大?怎么办呢?(指一名学生前面演示比较)两个角的顶点重合,一条边对齐,另一条边也对齐了!说明什么?(两个角一样大)同学们想一想,黄三角板刚才为什么说自己的这个角大呢?(因为它的边长)我们刚才已经知道了角的大小和角两边的张口有关,那么角的大小和将两边的长短有没有关系呢?请看!(课件演示一个角的两条边拉长)角的两边变长了,角的大小变了吗?再仔细看(课件演示把角的两边变短)角的两边变短了,角的大小变了吗?那么你说角的大小和角两边的长短有没有关系?(课件出示:角的大小和角两边的长短没有关系。)谁能把这句话告诉黄三角板?小节:角的两边张口越大,角越大。老师再教大家两句顺口溜方便大家比较角的大小
要知角的大与小,不看边长看张口。
2、做角
同学们,请那起桌子上的两根硬纸条。米老鼠想考考你:用这两根硬纸条做一个角,你能行吗?做好之后,展示给你的同桌看一看。
同学们真是很聪明,这么快就都做好了。下面请你移动角的两边,看看能有什么发现?同桌俩可以商量商量。
谁来说一说,移动角的两边,你发现了什么?(指名学生说)你说得真不错,能不能到前面来给大家演示一下呢?他做得很好,大家和他一起做一做,好吗?举起你做的角,反复这样做,想想看:角的大小和角两边怎么样有关系呢?(学生汇报)我们把角的两边往外拉,角两边的张口就大,这个角就大。反过来,我们把角的两边往中间推,角两边的张口就小,这个角就小。请同学们把你做的角收好!电脑小老师也做了几个角,仔细观察(课件演示)角的两边张口越大,角就怎么样?注意!再仔细看(课件演示)角的两边张口怎样,这个角就怎样?
三、总结新知,拓展延伸
1、拓展:看到同学们这么聪明,角娃娃非常高兴,要出个脑筋急转弯:4-1=?,课后试着把一张长方形纸剪掉一个角,看还剩几个角?比比谁的剪法多?
2、实践作业:。
同学们,在我们的生活中到处都藏着角。下面我们就回到家里看看卧室里有没有角。(卧室图片)厨房里藏着的角你能发现吗?(厨房图片)我们再到公园里转转吧!(公园图片)同学们请看,这是什么地方?(学校图片)我们的学校里有角吗?(指名几个学生说一说)其实在我们的校园里还有很多地方有角,下面的时间我们就到校园中找一找,比比看谁找到的角多,好吗?
《认识角》教学反思
【教学反思】
其实,“角”对学生而言并不是一个陌生的概念,然而,在学生的心里眼里,“角”的概念与我们数学中“角”的概念就不尽相同了。而怎样使学生经验与新课的教学完美结合呢?上述案例又如何体现教师的教学理想的呢?
一、 生活性与实践性的有机结合
游戏的导入引出“角”,然后教师点题说明本节课就来认识“角”,从生活实际引入,充分尊重了学生的年龄特点和认知规律,使得学生对新知的认识有一种亲切感,不是突如其来,让人摸不着头脑的东西。同时因为他们对角并不陌生,也就增加了学生学习新知的信心。“摸角”和到生活情境中“找角”以及后来的“做角”给了学生实践操作的时间与空间。让他们学会展现自己并有机会展现自己,在实践中探索新知。培养了学生的动手操作能力,同时也培养了他们愿意尝试的勇气和实践探索的精神。
七年级数学教学设计10
教学目标:
1、使学生在现实情境中理解有理数加法的意义
2、经历探索有理数加法法则的过程,掌握有理数加法法则,并能准确地进行加法运算。[]
3、在教学中适当渗透分类讨论思想。
重点:有理数的加法法则
重点:异号两数相加的法则
教学过程:
一、讲授新课
1、同号两数相加的法则
问题:一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作—5m。如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少?
学生回答:两次运动后物体从起点向右运动了8m。写成算式就是5+3=8(m)
教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?
学生回答:两次运动后物体从起点向左运动了8m。写成算式就是(—5)+(—3)=—8(m)
师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。
2、异号两数相加的法则
教师:如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向哪个方向运动了多少米?
学生回答:两次运动后物体从起点向右运动了2m。写成算式就是5+(—3)=2(m)
师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两个数相加得零。
教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?
学生回答:经过两次运动后,物体又回到了原点。也就是物体运动了0m。
师生共同归纳出:互为相反数的两个数相加得零
教师:你能用加法法则来解释这个法则吗?
学生回答:可用异号两数相加的法则来解释。
一般地,还有一个数同0相加,仍得这个数。
二、巩固知识
课本P18例1,例2、课本P118练习1、2题
三、总结
运算的关键:先分类,再按法则运算;
运算的步骤:先确定符号,再计算绝对值。
注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。
四、布置作业
课本P24习题1.3第1、7题。
七年级数学教学设计11
一、教学目标:
1、认知目标
正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。
2、能力目标
(1).通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。
(2).使学生能够灵活地进行乘方运算。
3、情感目标
让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。
二、教学重难点和关键:
1、教学重点:正确理解乘方的意义,掌握乘方运算法则。
2、教学难点:正确理解乘方、底数、指数的概念,并合理运算,
3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。
三、教学方法
考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。
四、教学过程:
1、创设情境,导入新课:
这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。
师:假如我现在抽取的是黑3红3黑4红5 (幻灯片放映图片)如何算24?
师:如果四张都是3呢?
生答:-3 - 3×3×(-3)=333324
师:现在老师把扑克牌拿掉一张红3,变成2个黑3,1个红3,大家有办法凑成24吗?
生:思考几分钟后,有同学会想出33(3)的答案
师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的帮助。(自然引入新课)
2、动手实践,共同探索乘方的定义
学生活动:请同学们拿出一张纸进行对折,再对折
问题:(1)对折一次有几层? 2
(2)对折二次有几层? 224
(3)对折三次有几层? 2228
(4)对折四次有几层? 222216
师:一直对折下去,你会发现什么?
生:每一次都是前面的2倍。
师:请同学们猜想:对折20次有几层?怎样去列式?
生:20个2相乘
师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法?
简记:22 23 24
师:请同学们总结对折n次有几层?可以简记为什么?
2×2×2×2×2
n个2
生:可简记为:2n
aaa?师:猜想:a生:an
n个a
师:怎样读呢?生:读作a的n次方
老师总结:求n个相同因数的积的运算叫乘方;乘方运算的结果叫幂;(教师解说乘方的特殊性),在an中,a
的因数),n叫做指数(相同因数的个数)。
注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.小试牛刀:
练习一:把下列各式写成乘方运算的形式:
6×6×6= (-3) (-3) (-3) (-3)=
2.1×2.1×2.1×2.1×2.1= 1
21
21
21
21
21
2=
注意:当底数是负数或分数时,底数一定要加上括弧,这也是辩认底数的方法.练习二、说出下列各式的底数、指数、及其意义
543431126
3.学生分小组讨论,总结乘方运算的性质
师:我们在进行有理数乘法计算的时候,要先确定积的符号,然后再把绝对值相乘。我们知道乘方是一种特殊的乘法运算,那对于乘方运算的结果如何来确定积的符号呢?用幻灯片出示表格,计算后,请同桌之间进行讨论并总结。 (师进行适当的引导,从底数和指数两方面进行考虑)
教师再对各种情况进行分析总结。
师生总结:负数的奇次幂是负数,负数的偶次幂是正数,正数的任何次幂都是正
数,0的任何正整数次幂都为0。
4、应用新知,尝试练习:在七年级数学晚会上,有6个同学藏在盾牌后面,男同学的盾牌上写的是一个正数,女同学的盾牌上写的是一个负数,这6个盾牌如下图所示,请算一算,盾牌后面男女生各有多少人?
(-3)15 ;(-5)8;(-7)6;(-10)25;123;(-16)9
乘方的运算是本节内容的第二个难点,符号确定后,学生往往容易犯直接拿底数和指数相乘的错误,所以准备了下面的例题,且要求学生写出相应的过程,加深对乘方运算的理解
例1:计算(教师板演一题后请学生板演)
(1) 26 (5) 62
(2) 73
44(3) (3) (6) 3
33(4)(4) (7) 4
比一比:(1)与(5)一样吗?(3)与(6)一样吗?(4)与(7)一样吗?
小结:一定要先找出底数和指数,确定符号后再去计算。
例12:计算:(1) 2522,(2)()3,(3),(4),(5)4 53533334
比一比:(2)与(3)一样吗?(4)与(5)一样吗?
总结:负数和分数的乘方书写时,一定要把整个负数和分数用小括号括起来。
5、课外探究
一张纸厚度为0.05mm,把它连续对折30次后厚度将是珠峰的30倍。试着去计算一下,这句话对不对。
6、归纳总结,形成体系:
1、乘方是特殊的乘法运算,所谓特殊就是所乘的因数是相同的;
特别提醒:底数为负数和分数时,一定要用括号把负数和分数括起来
2
3、进行乘方运算应先定符号后计算,要确定符号要先确定底数和指数。
7、作业布置:习题2.6第1、2题;
七年级数学教学设计12
6.3.1实数
第一课时
【教学目标】
知识与技能:
①了解无理数和实数的概念以及实数的分类;
②知道实数与数轴上的点具有一一对应的关系。
过程与方法:
在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类,接着把无理数在数轴上表示出来,从而得到实数与数轴上的点是一一对应的关系。
情感态度与价值观:
①通过了解数系扩充体会数系扩充对人类发展的作用;
②敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。
教学重点:
①了解无理数和实数的概念;
②对实数进行分类。
教学难点:对无理数的认识。
【教学过程】
一、复习引入无理数:
利用计算器把下列有理数3,,34795,,写成小数的形式,它们有什么特征? 58119
发现上面的有理数都可以写成有限小数或无限循环小数的形式即:33.0,34791,50.5 0.6,5.875,0.858119
归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式,
反过来,任何有限小数或者无限循环小数也都是有理数。
通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数,
把无限不循环小数叫做无理数。比如,5,等都是无理数。3.14159265也是无理数。
二、实数及其分类:
1、实数的概念:有理数和无理数统称为实数。
2、实数的分类:
按照定义分类如下:
整数小数)有理数(有限小数或无限循环实数分数数)无理数(无限不循环小
按照正负分类如下:
正有理数正实数负无理数实数零
负有理数负实数负无理数
3、实数与数轴上点的关系:
我们知道每个有理数都可以用数轴上的点来表示。物理是合乎是否也可以用数轴上的点表示出来吗?
活动1:直径为1个单位长度的圆其周长为π,把这个圆放在数轴上,圆从原点沿数轴向右滚动一周,圆上的一点由原点到达另一个点,这个点的坐标就是π,由此我们把无理数π用数轴上的点表示了出来。
活动2:在数轴上,以一个单位长度为边长画一个正方形,则其对角线的长度就是2以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示2,与负半轴的交点就是
可以把每一个无理数都在数轴上表示出来,即数轴上有些点表示无理数。
归纳:①实数与数轴上的点是一一对应的。即没一个实数都可以用数轴上的点来表示;
反过来,数轴上的每一个点都表示一个实数。
②对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。
三、应用:
例1、下列实数中,无理数有哪些? 2。事实上通过这种做法,我们
2,2,3.14,,0,10.12112111211112,π,(4)2。 3,0.717
解:无理数有:2,5,π
2注:①带根号的数不一定是无理数,比如(4),它其实是有理数4;
②无限小数不一定是无理数,无限不循环小数一定是无理数。
比如10.12112111211112。
例2、把无理数5在数轴上表示出来。分析:类比2的表示方法,我们需要构造出长度为的线段,从而以它为半径画弧,与数轴正半轴的交点就表示5。
解:如图所示,OA2,AB1,
由勾股定理可知:OB5,以原点O与数轴的正半轴交于点C,则点C就表示5。
四、随堂练习:
1、判断下列说法是否正确:
⑴无限小数都是无理数;
⑵无理数都是无限小数;
⑶带根号的数都是无理数; ⑷所有的有理数都可以用数轴上的点来表示,反过来,数轴上所有的点都表示有理数;
⑸所有实数都可以用数轴上的点来表示,反过来,数轴上的所有的点都表示实数。
2、把下列各数分别填在相应的集合里:
有理数集合无理数集合
22, 3.1415926,7,8,2,0.6,0,,,0.313113111。 73
3、比较下列各组实数的大小:(1)4,(2)π,3.1416 (3)32,
五、课堂小结
1、无理数、实数的意义及实数的分类. 2、实数与数轴的对应关系.
六、布置作业
P57习题6.3第1、2、3题;
七年级数学教学设计13
教学目标
1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2、能区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学难点
正确区分两种不同意义的量。
知识重点两种相反意义的量
教学过程
(师生活动)设计理念
设置情境
引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生
活中仅有这些“以前学过的数”够用了吗?下面的例子,仅供参考。
师:今天我们已经是七年级的学生了,我是你们的数学老师。下面我先向你们做一下自我介绍,我的名字是xx,身高1.73米,体重58.5千克,今年40岁。我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数)。
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“—”的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际。
这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。
分析问题
探究新知问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?
这些问题都必须要求学生理解。
教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流。
这阶段主要是让学生学会正数和负数的表示。
强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量。这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。
举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维。
问题4:请同学们举出用正数和负数表示的例子。
问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明。
能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性。
七年级数学教学设计14
知识目标:
掌握平方根、算术平方根、立方根的概念与表示,认识开平(立)方与平(立)方的联系,会用计算器求平方根与立方根,了解无理数和实数的概念,实数与数轴的对应关系。
过程目标:
经历从有理数到实数的扩展,体验实数与数轴上的点一一对应,探究用实数运算解决一些简单的实际问题。
情感目标:
运用实际例子帮助学生了解这些抽象概念的实际意义,学会用数形结合的数学思想解决问题。
教学重点:
平方根、算术平方根、立方根的概念与表示,会用计算器求平方根与立方根。
教学难点:
实数与数轴的对应关系,探究用实数运算解决一些简单的实际问题。
教学过程:
一、知识回顾:(通过填空,梳理知识系统)
1、如果一个数的____等于a,那么这个数叫做a的平方根(也叫做二次方根)
一个正数a有___个平方根,正平方根用___表示,负平方根用___表示,零的平方根是___,____没有平方根。求一个数的平方根运算叫做____。
2、正数的___平方根和___平方根,统称算术平方根。一个数a(a≥0)的算术平方根记做____。
3、一个数的立方等于a,那么这个数叫做a的___根(也叫做a的三次方根),记做____。一个正数有一个___的立方根,一个负数有一个___的立方根,零的立方根是___。
4、_________________叫做无理数,有理数和无理数统称_______。
5、在数轴上表示的两个实数,____的数总比____的数大.
二、练一练:(学生抢答,培养学生的数学思维)
1、下列各数有没有平方根?并说明理由。
2、已知某数的一个平方根为,求这个数和它的另一个平方根。
4、求图中阴影正方形的面积和边长。
5、一个立方体的体积是125,它的棱长是多少?
三、应用:(学生先小组讨论,再个别发言)
1、把一个长.宽.高分别为50cm,8cm,20cm的长方体铁块锻造成一个立方体铁块,问锻造成的立方体铁块的棱长是多少?
四.想一想:(学生口答,巩固概念)
(让学生动手画,培养学生的发散思维,和对知识的迁移能力)
(培养学生的探究能力,用数学思维方式来解决实际问题)
七年级数学教学设计15
一、学生起点分析:
通过前几节解方程的学习,学生已经掌握了解方程的基本方法.在此过程中也初步掌握了运用方程解决实际问题的一般过程,基本会通过分析简单问题中已知量与未知量的关系列出方程解应用题,但学生在列方程解应用题时常常会遇到一下困难,就是从题设条件中找不到所依据的等量关系,或虽能找到等量关系但不能列出方程.
二、教学任务分析:
本课以“等积变形”为例引入课题,通过学生自主探究、协作交流,教师点拨相结合的方式,引导学生动手操作的方法分析问题,体会用图形语言分析复杂问题的优点,从而抓住等量关系“锻压前的体积=锻压后的体积”展开教学活动,让学生经历图形变换的应用等活动,展现运用方程解决实际问题的一般过程.因此,本节教材的处理策略是:展现问题情境——提出问题——分析数量关系和等量关系——列出方程,解方程——检验解的合理性.
三、教学目标:
知识与技能:
1、借助立体及平面图形学会分析复杂问题中的数量关系和等量关系,体会直接与间接设未知数的解题思路,从而建立方程,解决实际问题.
2、通过解决实际问题,使学生进一步明确必须检验方程的解是否符合题意.
过程与方法:通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力.
情感态度与价值观:通过对“我变胖了”中的数学问题的探讨,使学生在动手、独立思考、的过程中,进一步体会方程模型的作用,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望.
四、教学过程设计:
环节一 创设情景,引入新课
内容:同学们自己预习的基础上,用已经备好的橡皮泥,自制“瘦长”与“矮胖”的圆柱,观察分析个中现象.
考虑几个问题:
1、 手里的橡皮泥在手压前和手压后有何变化?
2、在你操作的过程中,圆柱由“瘦”变“胖”,圆柱的底面直径变了没有?圆柱的高呢?
3、在这个变化过程中,是否有不变的量?是什么没变?
目的:让学生在玩中体会等体积变化的现象中蕴涵的不变量.同时分析出不变量与变量间的等量关系.
学生能够认识到: 手里的橡皮泥在手压前和手压后形状发生了变化,变胖了,变矮了.即高度和底面半径发生了改变.手压前后体积不变,重量不变.
环节二:运用情景,解决问题
内容: 例1、将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?
目的:将上述环节中体会到的形之间的变与不变的关系、量之间的等量关系抽象成数学问题,利用前几节的解方程方法解决实际问题.
实际效果:学生解答过程布列方程很顺利,有的学生还使用了下面的表格来帮助分析.
锻压前 锻压后
底面半径 5cm 10cm
高 36cm xcm
体积 π×25×36 π×100?x
由实验操作环节知“锻压前的体积=锻压后的体积”,从而得出方程.
解:设锻压后的圆柱的高为xcm,由题意得
π×25×36=π×100?x.
解之得 x=9.
此时有学生将π的值取3.14,代入方程,教师应在此时给予指导,不要早说,现在恰到好处!
(1) 此类题目中的π值由等式的基本性质就已约去,无须带具体值;
(2) 若是题目中的π值约不掉,也要看题目中对近似数有什么要求,再确定π值取到什么精确程度.
过程感悟:本节内容通过一幅几何图形展示题目中的一些数量关系,而实际操作的过程有同学将圆柱体变成了长方体,需要教师把握教育机会,引导学生作出相关的解释.
分析: 锻压前 锻压后
底面半径 5cm 长acm, 宽bcm
高 36cm xcm
体积 π×25×36 abx
环节三:操作实践,发现规律
内容:学生用预先准备好的40厘米长的铁丝,以小组作出不同形状的长方形,通过测量边长,近似求出长方形的面积,比较小组内六个同学的计算结果,你发现了什么?
目的:我们知道, 感知到的东西往往没有自己亲手经历操作后的感受来得实在.所以设置此环节,让学生手、眼、脑几个感官并用,在操作中体会,在计算中验证,在变化中发现.这样能培养学生观察、分析,归纳、总结等数学学习中不备数学思想与数学方法,也同时让学生感悟最复杂的问题中的道理,就在我们玩的过程,就在我们的生活中.
实际效果:
长(cm) 宽(cm) 面积(cm2)
长方形1 15 5 75
长方形2 13.6 6.4 86.4
长方形3 12.8 7.3 93.44
长方形4 11.6 8.4 97.44
长方形5 11 9 99
长方形6 10 10 100
由学生的实际操作得到的近似值已反映出来一个很好的规律.
学生:由操作的过程,同学们作出的长方形形状有“胖”有“瘦”, 反映到表中数据为, 当长方形的周长一定,它的长逐渐变短,宽随之逐渐变长,面积在逐渐变大.当长与宽一样长时面积最大.
过程感悟:不要把学生逼太紧,不要怕完不成进度,这个过程进行完后,学生对课本设置相关内容就剩下规范解题过程了.学生的理解远比直接先讲教材的例题效果要好的多.
环节四:练一练,体验数学模型
内容:课本例题
目的:体验“数学化”过程,进一步理性地感受上一个环节中得出的结论,培养学生数学思考的严谨性,判断推理的科学性,语言表述的准确性.
例2、 一根长为10米的铁丝围成一个长方形.若该长方形的长比宽多1.4米.
(1)此时长方形的长和宽各为多少米?
(2)若该长方形的长比宽多0.8米,此时长方形的长和宽各为多少米?它围成的长方形的面积与(1)相比,有什么变化?
(3)若该长方形的长与宽相等,即围成一个正方形,那么正方形的边长是多少?它围成的长方形的面积与(2)相比,有什么变化?
实际效果:学生掌握很好.课本已有完整的解题过程,留做课后作业.
环节五:课堂小结
1.通过对“我变胖了”的了解,我们知道“锻压前体积=锻压后体积”,“变形前周长等于变形后周长”是解决此类问题的关键.其中也蕴涵了许多变与不变的辨证的思想.
2.遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验.
3.学习中要善于将复杂问题简单化、生活化,再由实际背景抽象出数学模型,从而解决实际问题.
环节六:布置作业
【七年级数学教学设计】相关文章:
1.数学的教学设计