鸡兔同笼教案

时间:2024-06-02 15:55:43 教案 我要投稿

鸡兔同笼教案范文锦集7篇

  作为一名默默奉献的教育工作者,通常需要准备好一份教案,教案是备课向课堂教学转化的关节点。来参考自己需要的教案吧!下面是小编整理的鸡兔同笼教案7篇,仅供参考,希望能够帮助到大家。

鸡兔同笼教案范文锦集7篇

鸡兔同笼教案 篇1

  鸡兔同笼问题最早出现在我国古代的一本数学书《孙子算经》中,原题是:“今有雉、兔同笼,上有三十五头,下有九十四足。问雉、兔各几何?”该书给出了一种典型的解法,即:兔数=腿数÷2—头数(94÷2—35=12),鸡数=头数—兔数(35—12=23);也就是教材中介绍的抬脚法。鸡兔同笼问题,二、三年级的学生奥数学过,五、六年级的学生教材中安排在数学广角中学,到了初中还要学。我也曾不禁想过:鸡兔同笼问题怎么有这么大的魅力,让不同年龄层次的孩子们都争相去学,其中蕴含了怎样的数学思想呢?可今天自己就要上这一课了,于是就带着问题研究本课教材,收集有关本课的材料,认真设计并实践了本课。真是功夫不负有心人,我参考了几位专家的教法,结合自己班孩子的实际情况设计的教案在实践中得到良好的教学实效,现反思如下:

  一、关注每位孩子的成长是成功的前提

  鸡兔同笼问题既然作为奥数的内容,那它的思维含量必然很高,然而鸡兔同笼问题又作为六年级数学广角的内容,势必让每个孩子对这类问题都应有各自能够理解的方式去掌握,而不能一味地追求最优化的方式。课堂上从列表的枚举法入手,接着利用尝试法再到假设的算术法,不仅从思维上层层递进,更关注每个孩子的学习起点和成长体验,是本课收到良好教学效果的前提。

  二、关注课堂的互动、生成是取得良好效果的基础

  课堂是师生双边的交换活动,是教师与学生交流的活动。课上,教师与孩子们交流不耐烦,很是专制的强调哪些事可以做,哪些事不可以做,会限制学生的能动性和思维的发展,从课堂上来看,我与学生的交流是非常融洽的。从课前谈话,故事到入、铺垫,到鸡兔同笼原型的展开,再到生活实例的引申,我们的交流都是在无负担的、轻松的氛围中进行的,在无形中,孩子们放开了思绪,生成了很多意想不到的、让人回味的结论和问题。再则,从心理学的角度我们可以知道:正面的强化作用,对学生的知识、能力、情感和思维都有积极的作用。因此,在评价方面我采取学生回答精彩时,及时有效的正面评价;学生回答不上来或回答不够具体时,友好的提醒先想一想或听听同学们的意见,再交流……点滴的心语交流,让孩子们没有负担的学习,同时发展性的评价,更促使孩子们高度关注学习的内容,做到了良性的情绪循环,促进了教学的有效性展开。正是如此,自然形成了融洽的课堂,达到良好的教学效果。

  三、关注数学思想的传承是达成目标的保障

  解决鸡兔同笼问题的过程中蕴含丰富的数学思想,有绘图的数形结合思想、有算术计算的`假设思想,有方程代数的数学建模思想等。本人思考如果一节课把所有的思想内涵都包容进去,平均分配学习时间和关注度,必定导致课堂内容学习的拥堵和孩子们学习的不知所措。因此,我选取了适合孩子们认知的方式的,首先用一个诙谐幽默的鸡兔玩游戏的故事引入,让学生弄清鸡兔各有什么特点?4只鸡和3只兔一共有多少条腿?鸡学兔走路,地上有几条腿?多的几条腿是谁的?兔学鸡走路,地上有几条腿?少的几条腿是谁的?根据学生已获得的知识,注意引导学生围绕自己的发现,进行深层次地思考,重点渗透以列表的一一对应思想和算术解决的假设模型等数学思想,并通过猜想、验证,使学生应用所发现的数学知识进行判断,很快掌握了用假设法解鸡兔同笼问题的方法,并在学习方法的过程中,体会数学思想。

  本课虽然没有华丽的修饰,但已引起学生的共鸣、激发了他们的学习愿望,完全吃透所学内容,思维得到锻炼。

鸡兔同笼教案 篇2

  教学目标:

  (一)知识技能

  1、使学生初步认识“鸡兔同笼”的数学趣题,了解与此有关的数学史,感受我国传统的数学文化。

  2、使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法来解答“鸡兔同笼”的问题,并能选择适当方法解决一些与“鸡兔同笼”相似的数学问题。

  (二)过程与方法:在学生探究方法的过程中,使学生理解并运用假设的思想解决数学问题,形成有序思考的意识,体验数学的思想方法。

  (三) 情感态度价值观:过数学文化的熏陶感染培养学生的民族自信心和研究问题的科学素养。

  教学重点:

  使学生理解并运用假设的思想,通过画图法、列表法来解答“鸡兔同笼”及其类似的数学问题。

  教学难点:

  使学生发现并掌握用列表法解决鸡兔同笼及类似的数学问题。

  教学过程:

  一、激趣导入 渗透方法

  1、 出示绕口令

  1只小鸡2条腿, 1只兔子4条腿;

  2只小鸡( )条腿, 2只兔子( )条腿;

  3只小鸡( )条腿, 3只兔子( )条腿。……

  【设计意图:在激发学生兴趣,缓解学生紧张情绪的同时,使学生明确鸡和兔的腿数】

  2、 教师出示一幅简单得不能再简单的图, 说明○代表头,线段代表腿,让学生说是鸡还是兔子?紧接着再出示两条线段。 让学生说是鸡还是兔子?观察图,比较鸡和兔子的异同

  【设计意图:使学生通过观察抓住鸡兔背后的数学本质:相同之处:鸡和兔都有一个头,不同之处:鸡有2条腿,兔有4条腿。从课的一开始,就向学生渗透画图的方法】

  3、笼子里有鸡和兔子共4只,鸡和兔子可能有几只?

  老师把你们说的这3种情况的画出图来了,很直观。还可以怎样出示展示更清晰?

  如果学生说出列表,老师先出示无序列表,再请学生帮忙修改

  【设计意图:引导学生思考问题要全面、有序。同时渗透画图、列表的方法,为后面学生独立解题打下一定的基础】

  接着让学生从表格中观察:你能从头数和腿数的变化中发现什么?引导学生发现:头数不变时,多一只兔子就多两条腿,多了一只鸡就减少两条腿

  【设计意图:一是引导学生从数学现象背后发现数学规律,同时为后面学生出现多种列表法进行了渗透】

  二、独立探究 解决问题

  刚才我们把鸡和兔放在同一个笼子里,这就是有名的“鸡兔同笼”。

  谁知道“鸡兔同笼”研究的是什么问题?(把鸡和兔放在同一个笼子里,给出总头数和总腿数,求鸡兔各几只)

  1、出示例题,读儿歌

  菜市场里真热闹,鸡兔同笼喔喔叫。

  数数头儿有8个,数数腿儿26。可知鸡兔各多少?

  2、 指名说说已知条件和问题。

  引导学生找出隐藏的条件:每只鸡有2条腿,每只兔有4条腿

  3、你们愿意自己尝试解答吗?

  每个同学有2个选择

  第一:卡片上画了8个圆,代表8个头,请你用线段代表腿,画一画。

  第二:用填表的方法,看能否找到答案。

  (如果学生提出用计算的方法,也让他们先画图和列表,之后可以再计算)

  【设计意图:这节课的重点是使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法来解答“鸡兔同笼”的问题,所以这里强调的是尝试使用直观的画图法、列表法。】

  三、小组交流 开阔思路

  小组讨论的要求是

  1、给组内同学讲一讲你解题的方法和过程。

  2、认真倾听组内同学的发言,你又学会了哪种解题方法?如果有疑问,请你提出来,大家共同解决。

  【设计意图:提出具体明确的小组合作的要求,这样的要求便于学生进行交流,提高小组合作学习的效率。】

  四、全班交流 成果共享

  1、画图法

  预设1:用八个圆表示鸡的'头,所以每个头下面画两条腿,等于16条,比已知条件给得26条少10条。所以在每个头下面再添上2条腿,一直添到26条腿。结果是5只兔子3只鸡)

  预设2:用八个圆表示兔的头,一共32条腿,多了6条腿,擦去3个2条腿结果也是5只兔子3只鸡

  为什么2条腿2条腿的添上?为什么2条腿2条腿的擦去?

  你认为这两种画法哪种简单?

  【设计意图:使学生思维更加简单,避免思维定势,真正掌握画图的本质。】

  2、列表法

  教师让学生在实物投影下讲解列表的方法。

  (预设3种列表法)

  3、逐一列表法

  情况1:鸡的只数 1 2 3 4 5 6 7

  兔的只数 7 6 5 4 3 2 1

  共有足数 30 28 26 24 22 20 18

  情况2

  鸡的只数 1 2 3

  兔的只数 7 6 5

  共有足数 30 28 26

  情况1与情况2进行比较

  确定只有一个答案时,找到了问题答案,后面的情况可以不再列举

  情况3:兔的只数 1 2 3 4 5 6 7

  鸡的只数 7 6 5 4 3 2 1

  共有足数 18 20 22 24 26 28 30

  情况4:兔的只数 1 2 3 4 5

  鸡的只数 7 6 5 4 3

  共有足数 18 20 22 24 26

  情况3与情况4进行比较

  确定只有一个答案时,找到了问题答案,后面的情况可以不再列举

  情况2与情况4进行比较

  哪个列表能快速找到答案,为什么?

  4、取中列表法

  鸡的只数 4 3

  兔的只数 4 5

  共有足数 24 26

  5、跳跃列表法

  鸡的只数 1 3

  兔的只数 7 5

  共有足数 30 26

  (如果后两种没有出现,教师可以进行引导,也可以在第二课时进行引导,具体情况根据课堂学生生成情况和课堂时间而定。

  如果三种表格都出现了,那么根据每一种列表的特点,给每种列表方法分别取个名字。并建议学生采用逐一列表法)

  【设计意图:培养学生有序思维的能力,同时也体现出不同的学生用不同的方法解决问题,从数据中发现蕴含的规律,培养学生灵活思维的能力。建议学生采用逐一列表法是为以后解答开放性问题做准备】

  五、灵活运用 巩固方法

  1、今天我们通过画图和列表方法解决了“鸡兔同笼”问题。

  我们的祖先早在1500多年前就已经用巧妙的方法解决了这个问题,数学著作《孙子算经》里就有记载。这些著作流传海外,对其他国家也产生了较大影响。其中日本也进行了类似研究,不过日本称之为“龟鹤问题” 。

  出示:龟和鹤共6只,龟的腿和鹤的腿共有18条,龟和鹤各有几只?

  你认为“龟鹤问题”和 “鸡兔同笼”有联系吗?

  用你刚才没有尝试过的方法解决

  2、设计意图:

  1、使学生感受我国传统的数学文化。

  2、 能找到二者之间内在联系,培养学生解决类似“鸡兔同笼”数学问题的能力。

  3、 使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法,能够尝试体验不同的解决问题的策略。

  【设计意图:这两题一道比一道有难度,让孩子根据自己情况自主选择】

  六、总结收获 畅谈体会

  通过今天的学习,你有什么收获?

鸡兔同笼教案 篇3

  时间:20xx年12月3日

  地点:大会议室

  主备人:崔xx

  参加人员:六年级全体数学教师

  教研内容:“鸡兔同笼”问题

  教学目标:

  1.初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题。

  2.结合图解法理解假设的方法解决鸡兔同笼问题。

  3.在现实情景中,让学生初步体会画图、列表、假设等多种解题策略,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

  教学重点:能用列表法和画图法解决相关的实际问题。

  教学难点:结合图解法理解假设的方法解决鸡兔同笼问题。

  重难点突破:借助已有数据利用列表尝试(枚举法)解决问题从中体会数据之间的变化特点,有意识的为下面的方法做好铺垫,通过适当地 引导和学生小组合作探究相结合,让学生在尝试、探索、交流中农动“鸡兔同笼”问题的基本结构,经历不同的方法结局问题的`过程形成此类问题的一般性策略。

  模式方法:提出问题——列举尝试——观察发现——讨论交流——寻找解法。

  作业设计:有浅入深“鸡兔同笼”的基本题型多练。

  组内教师讨论要点:

  1、引导学生理解提议,找出隐藏条件,帮助学生初步理解“鸡兔同笼”问题的结构特点。

  2、列表虽然繁琐,但是一种重要的解决问题的策略的方法,是解法的基础,是重要教学内容之一,从中体会数量的变化规律。

  3、假设法是学生应该掌握的一种方法,要让学生准确的说明算理,体会为什么假设的与所求的结果不是一致的道理。

  4、列方程解时要借助实例,体会设X的技巧,因为学生学习内容的局限性,让学生体会设其中只数多的兔为X的道理,方法是设出一部分,根据总数列出方程(易列难解)

  活动总结:

  全体教师针对研究主题进行研讨,各抒己见,畅所欲言,结合自己以往的教学经验,探讨重点难点的突破方法,以教学中要注意的问题,让全体教师对刺客的教学内容有明确的思路。

鸡兔同笼教案 篇4

  复习目标:

  通过复习进一步用假设法或列表法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

  复习重点:尝试用不同的'方法解决鸡兔同笼问题,在尝试中培养学生的思维能力。

  复习难点:在解决问题的过程中,培养学生的逻辑思维能力。

  教法:分析、引导

  学法:自主探究

  课前准备:多媒体。

  教学过程:

  一、定向导学:2分钟

  1、板书课题

  2、复习目标:

  掌握用列表法、假设法或列方程的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

  二、方法归类:8分

  1、填空:

  一只公鸡( )条腿,两只公鸡( )条腿,五只公鸡( )条腿。

  一只兔子( )条腿,两只兔子( )条腿,五只兔子( )条腿。

  鸡兔共五只,腿有( )条。

  2、谁记得解决这类问题的方法呢?

  学生回答

  3、了解抬脚法

  笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,

  有94只脚。鸡和兔各有几只?

  古人的算法可以用下图表示:

  头… 35 脚减半 35 下减上 35 上减下 23 …鸡

  脚… 94 47 12 12 …兔

  三、解决问题:10分

  (1)、鸡兔同笼,有20个头,56条腿, 鸡、兔各有多少只?

  (2)、停车场里停了三轮车和小汽车共11辆,总共有40个轮子,问三轮车和小汽车各有几辆?

  (3)比赛答题,对一题加10分,错一题扣6分,一道对题比一道错题多( )

  分。

  (4)数学竞赛,答对一题得10分,答错一题扣6分。小明抢答了16道题,最后得分16分,他答对了几道题?

  四、小结检测:20分钟

  1、小结:通过今天的复习,你有什么收获?还有什么疑问吗?

  2、检测:

  a、问答:

  (1)解答鸡兔同笼问题要弄清( )多少只,还要弄清( )多少只。

  b、解决问题

  (1)、全班一共有38人,共租了8条船,每条大船乘6人,每条小船乘4人,每条船都坐满了。问大船和小船各多少条?

  (2)大和尚一人吃3个馒头,小和尚3人吃一个馒头,100个和尚吃100个馒头。求大、小和尚各有多少个人?

  (3)篮球比赛,张鹏共得21分,张鹏在这场比赛中投进了几个3分球?几个2分球?(张鹏没有罚球)

  (4)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?

鸡兔同笼教案 篇5

  [教学目标]

  1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

  2、通过列表举例、作图分析等方法,解决鸡与兔的数量问题。

  [教学重、难点]

  通过列表举例、作图分析等方法,解决鸡与兔的数量问题。

  [教学过程]

  一、呈现鸡兔同笼问题。组织学生探索解决问题的方法。

  1、小组活动

  2、交流方法

  3、

  二、做一做

  独立完成第1—3题,并交流解决的.方法。

  第4题的答案有多种,启发学生找出不同的答案。

  讨论第4题与前3题所给条件的不同,从而让学生知道哪些题的答案是唯一的,哪些题是有多种答案的。

  [板书设计]

  鸡兔同笼问题

  方法1方法2方法3方法4

鸡兔同笼教案 篇6

  教学目标:

  1.认识和了解“鸡兔同笼”问题,初步掌握解决问题的策略与方法,体会解决问题策略的多样性。

  2.经历解决问题的过程中,学习和体会“枚举”、“假设”等数学思想和方法,提高解决实际问题的能力。在解决问题的过程中归纳概括出鸡兔同笼问题的数学模型,进一步培养学生的合作意识和逻辑推理能力。

  3.让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染,增强学习数学的乐趣。

  教学重点:会用假设法和方程法解答“鸡兔同笼”问题。

  教学难点:明白用假设法解决“鸡兔同笼”问题的算理。

  教学用具:

  多媒体课件。

  教学过程:

  一、创设情境,引入新课。

  1、引入:

  同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题。你们想看一看吗?

  今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?把它翻译成现代汉语是:现在有一些鸡和兔被关在同一个笼子里。鸡和兔共有35个头,94只脚。鸡和兔各有多少只?

  这就是著名的“鸡兔同笼”问题,生活中类似的问题非常多,这类问题应如何解决呢?今天我们就来研究著名的“鸡兔同笼”问题。板书课题:“鸡兔同笼”。

  为便于研究,我们先从简单的生活问题入手,请看下面问题。

  ●学校买来50张电影票,一部分是4元一张的学生票,一部分是6元一张的成人票,总票价是260元。两种票各买来了多少张?

  【设计意图】以我国古代著名的鸡兔同笼问题引入,让学生感受我国悠久的数学文化,激起探知这类问题的兴趣。

  二、自主学习、小组探究

  对于这个问题你想用什么方法来解决呢?请根据提示思考解决问题的方案。

  温馨提示:

  ①用列举法怎样解决问题?

  ②你能用画图的方法解答吗?

  ③如果把这些票都看成学生票或都看成成人票如何解答?

  ④回顾列方程解决问题的经验,怎样用方程解决问题?

  学生自己根据提示用自己喜欢的方法解决问题。

  先把自己的想法在小组内说一说,再共同协商解决。

  教师巡视,要注意发现学生的不同解法,同时参与小组的指导。

  三、汇报交流,评价质疑

  对于解决这个问题,同学们一定有自己的好的方法,请把你的好办法同大家交流吧。

  1.列举法。

  可以有目的的先展示这种方法。(多媒体展示。)

  学生票数(张)成人票数(张)钱数(元)

  2525250

  2426252

  2327254

  2228256

  2129258

  2030260

  质疑:有50张票,是否有必要一一列举,你是如何列举的?

  (引导学生通常先从总数的中间数列举。)

  质疑:根据假设算出的钱数与实际总钱数不一样时,你是如何调整的?

  (引导学生根据数据特点确定调整方向、调整幅度。)

  师强调:像咱们这样,采用列表的方法列举出来,并最终找到答案的方法,在数学上叫列举法,也叫枚举法。(板书:枚举法)

  2.假设法

  (1)假设全是成人票:

  ①为了便于学生理解,展示假设为成人票,学生试画的分析图。(图略)

  ②引导:上面的过程如果用算式怎样表示呢?请同学们试试看。

  (学生试着列算式,请两个学生到黑板上去板演。)

  预设板演:

  50×6=300(元)300-260=40(元)40÷(6-4)=20(张)

  50-20=30(张)

  ③质疑:你这样做是如何想的?你是如何理解多出的40元的?根据多出的40元如何求出学生票和成人票的?

  预设回答:

  假设全是成人票,就50×6=300元,而实际花260元,这样就多出了300-260=40元。

  而1张学生票看做成人票就比1张学生票多2元,学生票的张数就是40÷(6-4)=20张了,成人票就是50-20=30张。

  (2)假设全是学生票:

  如果假设成全是学生票该如何解答?(学生根据刚才的经验独立解答,交流时重点说清推理思路。)

  总结方法归纳抽象出这类问题的模型。

  学生票数=(成人票价×总张数-总钱数)÷(成人票价-学生票价).

  成人票数=(总钱数-学生票数×总张数)÷(成人票价-学生票价).

  3、方程法:

  除了以上两种方法,还有别的计算方法了吗?

  学生汇报列方程的方法。

  (1)找出相等的数量关系。

  (学生汇报,课件出示:成人票数+学生票数=50;成人钱数+学生钱数=260

  元)

  (2)根据等量关系列式:

  设成人票有x张,则学生票有(50-x)张。

  列方程为:6x+4(50-x)=260

  (解略)

  4.学生比较以上几种方法解题方法。

  四、抽象概括,总结提升。

  让学生结合自己解决问题的经验,用自己的语言进行总结。

  列举法:适合数据比较简单的问题,但是如果数字比较大,这样一一列举法就太麻烦了。

  画图法:操作简单,比较直观。但数字大的时候,画图也是比较麻烦的'。

  假设法:适合所有的这类问题,但比较抽象,不好理解。

  方程法:适用面广,便捷,容易理解。

  师:同学们,我们这节课研究“鸡兔同笼”问题,我们探讨出了用枚举法、假设法、解方程的方法解决这种题。只不过列举法对于数据较大时比较麻烦。一般我们采用假设法和解方程的方法比较简便。

  【设计意图】通过适时的总结,引领学生归纳建立“鸡兔同笼”问题的模型,及解决这类问题的一般方法和策略。

  五、巩固应用,拓展提高

  1.今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?(回应开课时的问题。)

  温馨提示:

  A.先让学生认真读题,(同桌讨论)。

  B.然后自己解决,汇报交流。交流时同时让学生感受中华民族悠久的数学文化。

  2.王丽有20张5元和2元的人民币,一共是82元。5元和2元的人民币各有多少张?

  处理方法:

  ①学生认真读题,引导学生对比“鸡兔同笼”问题模型,分析数量关系,然后选择合适的方法独立解答。

  ②小组内交流算法。

  ③全班交流。

  【设计意图】本题是“鸡兔同笼”问题模型,在现实生活中的应用,鼓励学生用自己喜欢的方法解答。进一步巩固“鸡兔同笼”问题的各种解法,培养学生的实践应用能力。

  3、巩固练习:回应解决例题,引导学生用合适的方法计算。然后说一说在我们的生活中有类似鸡兔同笼的问题吗?(龟鹤问题、乘船问题、合作植树问题等)

  【设计意图】让学生寻找生活中的鸡兔同笼问题,使学生感受到“鸡兔同笼”问题在生活中的广泛应用。

  3、全课小结:

  回顾总结,引发思考

  本节课,我们在解决“鸡兔同笼”问题时,采用了几种策略,在这节课中,我发现同学们还有其他的解决方法,下课后相互交流一下,并尝试一下。

  师总结:

  这节课大家共同探究,解决了生活中类似“鸡兔同笼”问题的实际问题。只要我们善于动脑,好多问题都可以归为一类问题,抽象出一个总的模型进行解决。

鸡兔同笼教案 篇7

  一、教学目标:

  1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  2、在解决“鸡兔同笼”的活动中,尝试通过列表举例、画图分析、尝试计算、列方程等方法解决鸡兔的数量问题。

  3、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

  二、教材分析:

  (一)设计意图:

  通过向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,从多角度思考,运用多种方法解题,学生可以应用作图法、列表法(逐一列表法、跳跃式列表法、取中列表法)、假设法、列方程解决问题。学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

  (二)设计思路:

  遵照《新课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。通过教师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。通过学习使学生认识到数形结合的.重要性,提高学生分析问题和解决问题的能力。

  在学习中应注意鼓励每个学生参与学习过程,注重学生之间交流,使学生共同学习,共同进步,共同提高,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。

  教学重点:体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。

  三、教学设计:

  <一>、提出问题

  师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”

  问:这段话是什么意思?(生试说)

  师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只? 这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。

  (板书课题:鸡兔同笼问题)

  <二>、解决问题

  师:说明为了研究方便,我们不妨先将题目的条件做一个简化。

  (课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?(同时出示鸡兔同笼情境图)

  师:同学们不妨先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)

  学生初步交流,教师提炼:可以用画图的方法、可以用列表法、可以用假设法、还可以用方程的方法。

  师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。

  学生思考、分析、探索,接下来小组讨论、交流、争辩。(老师参与其中,启发、点拔、引导适当,师生互动。)

  小组活动充分后进入小组汇报、集体交流阶段。

  师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?

  学生汇报探究的方法和结论:

  1:画图法:(学生展示画图方法及步骤)

  ①先画8个头。

  ②每个头下画上两条腿。

  数一数,共有16条腿,比题中给出的腿数少26-16=10条腿。

  ③给一些鸡添上两条腿,叫它变成兔.边添腿边数,凑够26条腿。

  每把一只鸡添上两条腿,它就变成了兔,显然添10条腿就变出来5只兔.这样就得出答案,笼中有5只兔和3只鸡。

  2.列表法:

  (展示学生所列表格)

  学生说明列表的方法及步骤:

  学生汇报:我们先假设有8只兔这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。

  鸡 8 7 6 5 4 3 2 1

  兔 0 1 2 3 4 5 6 7

  脚 16 18 20 22 24 26

  鸡 8 7 6 5 4 3 2 1

  兔 0 1 2 3 4 5 6 7

  脚 16 18 20 22 24 26

  学生汇报:我们组得出的结果也是只3鸡、5只兔,但我们不是一个一个地试,这样太麻烦了,我们是2个2个地试。

  鸡 8 6 4 3

  兔 0 2 4 5

  脚 16 20 24 26

【鸡兔同笼教案】相关文章:

鸡兔同笼教案01-02

《鸡兔同笼》教案最新10-23

《鸡兔同笼》教案15篇02-16

鸡兔同笼教案15篇02-13

鸡兔同笼教案汇编10篇04-03

鸡兔同笼教案集合6篇04-24

鸡兔同笼教案模板汇总10篇04-21

鸡兔同笼教案模板汇编7篇04-21

鸡兔同笼教案范文合集十篇05-05