- 《一元二次方程》的优秀教案 推荐度:
- 相关推荐
《方程》教案4篇
作为一位杰出的老师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。那么你有了解过教案吗?以下是小编为大家收集的《方程》教案4篇,欢迎阅读与收藏。
《方程》教案 篇1
教学内容:
教科书第12~13页,“回顾与整理”、“练习与应用”第1~4题。
教学目标:
1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。
2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。
教学过程:
一、回顾与整理
1、谈话引入。本单元我们学习了哪些内容?你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?在小组中互相说说。
2、组织讨论。
(1)出示讨论题。
(2)小组交流,巡视指导。
(3)汇报交流。
你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?
3、小结。同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。
二、练习与应用
1、完成第1题。
(1)独立完成计算。
(2)汇报与展示,说说错误的原因及改正的方法。
2、完成第2题。
(1)学生独立完成。
(2)你用怎样的方法连线的?(解方程求出未知数的'值;把x的值代入方程。)
3、完成第3题。
(1)列出方程,不解答。
(2)你是怎样列的?怎么想的?大家同意吗?
(3)完成计算。
4、完成第4题。单价、数量、总价之间有怎样的数量关系?指出:抓住基本关系列方程,y也可以表示未知数。
三、课堂总结
通过回顾与整理,大家共同复习了有关方程的知识,你还有什么疑问吗?
《方程》教案 篇2
教学内容:
p53--54练习十一1,2,3
教学目标:
1. 通过观察天平演示,使学生初步理解方程的意义;
2. 使学生能够判断一个式子是不是方程,并能解决简单 的实际问题;
3. 培养学生观察、描述、分类、抽象、概括、应用等能力。
教学重点:
判断一个式子是不是方程;初步理解方程的意义。
课前准备:
课件,习题板
教学过程:
一、复习旧知,激趣导入
同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有88位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:88+ x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!
二、出示学习目标
1、初步理解方程的意义,会判断一个式子是否是方程
2、按要求用方程表示出数量关系,培养学生观察、比较、分析概括的.能力。
三、学习过程。
(一)认识天平
(二)新课学习
自学指导(一)。
自学p53, 分别说一说图1,图2,,显示的信息。
图1天平两边平衡,一个空杯重100克。
图2在空杯里加一杯水后天平不平衡了。
自学指导(二)
再看图3说说图3 显示的信息。
天平1杯子和里面的水比200克法码重
天平2杯子和里面的水比300克法码轻
自学指导(三)
请用算式表示图3数量关系。
天平1、100+x>200
天平2、100+x<300
自学指导(四)
再看图4说说图4 显示的信息,请用算式表示图4数量关系
100+x=250
自学指导(五)
观察比较下列算式说说你的发现
观察比较
100+x>200
100+x<300
100+x=250
前面两个算式两边不相等,后面一个算式两边是相等的。
教师总结:像这样两边相等的算式我们把它叫做等式。(板书)
课堂练习(一)
写出几个等式
自学指导(六)
请学生把这里的等式分类,并说说你们是如何分类的?
20+30=50
20+χ=100
50×2=100
14-8=6
3y=180
78× 3=234
100+2y=3×50
学生汇报后让学生说出分类的理由。(有的含有未知数,有的没有未知数)
教师总结:含有未知数的等式,称为方程。(板书)
课堂练习(二)
请大家写出几个方程。
四、小结:回答什么是方程?
《方程》教案 篇3
教学目标:
知识目标:
通过练习,使学生进一步理解数量关系,掌握用方程解应用题的方法,能正确运用方程解答应用题。
能力目标:
培养学生分析问题、解答问题的能力。
态度、情感、价值观:
培养学生认真细致的学习习惯。
教学重点:
理解数量关系,掌握用方程解应用题的方法,能正确运用方程解答应用题。
教学难点:
理解数量关系。
教学过程:
一、基本练习(5 分钟)
1.列方程
(1)某数的5 倍加上它的2 倍和是42,求这个数。
(2)X 的5 倍减去它的2 倍差是1.2,求X。
2.育民小学四五年级共植树600 棵,五年级植树是四年级的3 倍。两个年级各植树多少棵?
(1)画图,找等量关系。
(2)列方程解应用题。
二、层次练习(15 分钟)
1.育民小学四五年级同学植树,五年级植树是四年级的3 倍,五年级比四年级多植300 棵。四五年级各植多少棵?
(1)这道题与上题有哪些相同点和不同点?
(2)你会解答这道题吗?试做
(3)订正:
解:设四年级植X 棵,五年级植3X 棵。
3X-X=300
2X=300
X=150
3X=3150=450
答:四年级植150 棵,五年级植450 棵。
2.试一试:妈妈的.年龄是女儿的4 倍,妈妈比女儿大27 岁,妈妈和女儿各多少岁?
学生独立做
3.小结:解答时,要抓住有倍的那句话设出未知数。看一看是求它们的和还是差,列出方程。
三、巩固练习(15 分钟)
1.看图列方程125 页3 题。
完成后交流
2.对比练习
(1)张叔叔骑自行车,李叔叔骑摩托车。二人从相距112 千米的两地同时出发,相向而行,经过1.6 小时相遇。李叔叔骑摩托车每小时行54 千米,张叔叔骑自行车每小时行多少千米?
(2)张叔叔骑自行车,李叔叔骑摩托车。二人从相距112 千米的两地同时出发,相向而行,李叔叔骑摩托车每小时行54 千米,张叔叔骑自行车每小时行16 千米,二人经过几小时相遇?
(3)张叔叔骑自行车,李叔叔骑摩托车。二人同时从两地出发,相向而行,李叔叔骑摩托车每小时行54 千米,张叔叔骑自行车每小时行16 千米,经过1.6 小时相遇。两地相距多少千米?
独立完成后交流。
四、总结交流(5 分钟)
说说你有什么收获?
《方程》教案 篇4
教学目标:
1、通过回顾等式、不等式、用字母表示的式子等内容,进一步巩固加深学生对方程的理解和认识。
2、会用方程表示简单的等量关系,会列方程解决简单问题。
3、感受式与方程在解决问题中的价值,培养初步的代数思想。
教学重点:
明确字母表示数的意义和作用;会灵活的用方程解答两步简单的实际问题。
教学难点:
找等量关系式,用方程解决实际问题。
教学过程:
一、导入
我们都记得这首儿歌
一只青蛙一张嘴,两只眼睛四条腿;
两只青蛙两张嘴,四只眼睛八条腿;
请你来接下句
三只青蛙_________;
五只青蛙呢?
N只青蛙呢?
一首小小的儿歌展示了数学的机智和趣味,细心的同学已经发现,这首儿歌不仅融入了数字,还包含着字母,用字母来表示数。我们今天的课就围绕用“字母表示的.数”来展开。
二、进行复习
1、用字母表示数
(1)同学们想一想,在数学中有哪些地方常用字母来表示?
生列举:数量关系(路程、速度、时间 即s=vt)
计算公式(长方形面积计算公式:s=ab 圆柱的体积公式:v=sh 等)
运算定律(加法结合律:a+b+c=a+(b+c)等)
(2)请同桌之间相互举两个这样的例子。
(3)你们知道为什么用字母表示数吗?
(4)现在就让我们一起来试一试:请大家翻开课本71页,抓紧时间做一做吧。生自主完成课本(1)~(4)题。师巡视;完成后全班交流答案,重点说一说表示的意义。
(5)现在我把第(4)题做一下修改:一台插秧机上午工作5小时,下午工作3小时,上下午一共插秧160平方米,问:每小时插秧多少平方米?
算法有两种:其一:算术方法:160÷(5+3)=20
依据:总插秧数量÷时间=单位时间量
其二:列方程:x(5+3)=160
依据:单位时间量×时间=总插秧数量
观察比较:以上两种解法有哪些相同点和不同点?
相同点:都是根据数量间的相等关系列式。
不同点:解法一:以已知推出未知,是算术法。
解法二:把未知数用x表示,列出含有未知数的等式,即方程。
同学们想一想,等式和方程有什么联系和区别?
方程有哪些性质呢?(等式 、含有未知数)
2、方程
(1)判断下列哪些是方程(说明理由)
7+8=3×5 4a+5b a+12=89
4x=y 3+100>25+y 6+x=0.5×3
(2)你会解方程吗?从中选择一个试一试。
(3)如何判断方程的解是否正确?
(4)列方程解应用题的解题步骤是怎样的?
讨论后得出:①弄清题意,找出未知数,并用x表示;
②找出应用题中数量之间的相等关系,列方程;
③解方程;
④检验,写出答案。
3、列方程解决问题
(1)在生活中我们经常会遇到一些实际问题,列方程解方程能帮我们很快解决。例如,这副乒乓球拍到底多少元呢?让我们一起来算一算。
请生一起看书71页例一:李老师买下面的球拍,给售货员100元,找回2元,一副乒乓球拍的价钱是多少元?
引导生认真审题,找出等量关系,自己列出方程并求解。交流解题思路。
(2)生尝试自主解决例二:相遇问题。师巡视,请生到黑板完成,全班交流。
(3)练习
①练一练1
②师展示习题:说出下面每组数量之间的相等关系。
(1)女生人数,男生人数,全班人数;
(2)苹果的重量,梨的重量,梨比苹果少的重量。
(3)一辆公共汽车中途到站后,先下去15人,又上来9人,这时车上正好有30人,到站前车上有多少人?
(4)一本书240页,小刚看了5天,还剩165页没看,平均每天看多少页?
③课本练一练5
三、小结
说一说你今天的收获在哪里?