《确定起跑线》

时间:2024-11-30 07:29:41 教案 我要投稿
  • 相关推荐

《确定起跑线》

《确定起跑线》1

  教学目标

  1、通过活动让学生了解椭圆式田径场跑道的结构,学会确定起跑线的方法。

  2、结合具体的实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

  3、在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,感受到数学知识在生活中的广泛应用。

  重点:

  能运用周长的知识确定起跑线。

  难点:

  理解相邻起跑线的距离与跑道宽度之间的关系。

  教学过程

  一、创设情境,生成问题。

  师:同学们,你们看过田径比赛吗?回忆一下在运动会田径比赛中,100米比赛和400米比赛的起点位置有什么不同?

  生:100米比赛的运动员在同一起跑线上,400米比赛的运动员在不同的起跑线上。

  师:为什么?

  生可能回答,如果400米比赛运动员在同一起跑线上,外圈跑的'路程长,那样不公平,所以外圈的起跑线要向前移一些。

  师:那向前移多少呢?(生不知道)这就是我们这节课要研究的如何确定起跑线。(板书课题)

  二、探索交流,解决问题

  (课件出示完整跑道图)

  1、了解跑道结构:

  小组交流:观察跑道图,说一说,每一条跑道具体是由哪几部分组成的?内外跑道的差异是怎样形成的?

  学生充分交流得出结论:

  ①跑道一圈长度=2条直道长度+一个圆的周长

  ②内外跑道的长度不一样是因为圆的周长不一样。

  2、了解了跑道的结构,你想怎样解决“400米比赛外道的起跑线要向前移多少米”的问题?

  先自己思考,再与同桌说一说,最后汇报方案。

  学生汇报:(预设)

  (1)算出跑道的全长,外道的长度比内道长多少,外道的起跑线相应向前移多少。

  (2)算出两侧半圆形跑道拼成一个整圆的周长,外圆的周长比内圆的周长长多少米,跑道就向前移几米。

  (3)直接利用周长公式求周长差

  预设(3)学生不容易想到,如没有提出这种想法可以在汇报的过程中渗透、明析。

  3、组织学生探究

  师:现在就可以按照自己设想的方案算出相邻的跑道的起跑线应相差多少米?

  有困难的可以同桌互相帮助,共同完成。

  教师巡视辅导。

  4、汇报交流,发现规律

  (1)学生汇报不同的计算方法

  a、算跑道全长

  b、算圆的周长

  (2)比较哪种计算方法更简单,还用更简单的方法吗?

  (3)引发学生进一步思考方法二,运用公式直接计算周长差

  如果我们在计算圆的周长时直接用π来表示,看有什么发现?

  (72.6+1.25×2)π-72.6π

  =72.6π-72.6π+1.25×2×π

  =1.25×2×π

  (75.1+1.25×2)π-75.1π

  =75.1π-75.1π+1.25×2×π

  =1.25×2×π

  (相邻跑道起跑线相差都是“跑道宽×2×π”)

  师:从这里可以看出:起跑线的确定与什么关系最为密切?

  生:与跑道的宽度关系最为密切。

  师(小结):同学们经过努力终于找到了确定起跑线的秘密!对了,其实只要知道了跑道的宽度,就能确定起跑线的位置

  三、巩固应用,内化提高

  1、小学生运动会的跑道宽比成人比赛的跑道宽要窄些,要开小学生运动会,你能帮裁判计算出相邻两条跑道的起跑线又该相差多少米吗?400米的跑步比赛,跑道宽为1米,起跑线该依次提前多少米?如果跑道宽是1.2米呢?在运动场上还有200米的比赛,跑道宽为1.25米,起跑线又该依次提前多少米?

  2、一根足够长的铁丝紧贴地面绕地球一周形成一个圆,当将这个铁丝延长10米,然后距地面一定高度后重新绕地球一周围成一个圆,请问你能从铁丝下面走过去吗?

  四、回顾整理,反思提升

  通过这节课的学习,你有何收获?觉得自己表现怎样?

《确定起跑线》2

  教学目标:

  1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。

  2、让学生切实体会到数学在体育等领域的广泛应用。

  教学重点:

  如何确定每一条跑道的起跑点。

  教学难点:

  确定每一条跑道的起跑点。

  教学过程:

  一、提出研究问题。(出示运动场运动员图片)

  1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)

  2、各条跑道的起跑线应该向差多少米?

  二、收集数据

  1、看课本75页了解400m跑道的结果以及各部分的数据。

  2、出示图片、投影片让学生明确数据是通过测量获取的。

  直跑道的长度是85.96m,第一条半圆形跑道的.直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)

  三、分析数据

  学生对于获取的数据进行整理,通过讨论明确一下信息

  1、两个半圆形跑道合在一起就是一个圆。

  2、各条跑道直道长度相同。

  3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。

  四、得出结论

  1、看书P76页最后一图

  2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)

  3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5)

  五、课外延伸

  200m跑道如何确定起跑线?

【《确定起跑线》】相关文章:

确定起跑线教学反思05-25

起跑线上09-17

起跑线09-22

梦想的起跑线05-15

青春的起跑线08-06

新的起跑线04-27

站在起跑线上08-14

起跑线上的美丽06-03

梦想的起跑线10-15

站在新的起跑线上09-29