平行四边形教案

时间:2023-05-28 15:48:55 教案 我要投稿

关于平行四边形教案4篇

  作为一位兢兢业业的人民教师,往往需要进行教案编写工作,借助教案可以提高教学质量,收到预期的教学效果。来参考自己需要的教案吧!下面是小编帮大家整理的平行四边形教案4篇,欢迎阅读与收藏。

关于平行四边形教案4篇

平行四边形教案 篇1

  【实验目的】

  验证互成角度的两个力合成时的平行四边形定则。

  【实验原理】

  等效法:使一个力F的作用效果和两个力F1、F2的作用效果都是让同一条一端固定的橡皮条伸长到某点,所以这一个力F就是两个力F1和F2的合力,作出F的图示,再根据平行四边形定则作出F1和F2的合力F的图示,比较F和F的大小和方向是否都相同。

  【实验器材】

  方木板一块、白纸、弹簧测力计(两只)、橡皮条、细绳套(两个)、三角板、刻度尺、图钉(几个)、细芯铅笔。

  【实验步骤】

  ⑴用图钉把白纸钉在水平桌面上的方木板上,并用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套。

  ⑵用两只弹簧测力计分别钩住细绳套,互成角度地拉像皮条,使橡皮条伸长到某一位置O,如图所示,记录两弹簧测力计的读数,用铅笔描下O点的位置及此时两细绳套的方向。

  ⑶只用一只弹簧测力计通过细绳套把橡皮条的结点拉到同样的位置O,记下弹簧测力计的读数和细绳套的方向。

  ⑷用铅笔和刻度尺从结点O沿两条细绳套方向画直线,按选定的标度作出这两只弹簧测力计的读数F1和F2的图示,并以F1和F2为邻边用刻度尺作平行四边形,过O点画平行四边形的对角线,此对角线即为合力F的图示。

  ⑸用刻度尺从O点按同样的标度沿记录的方向作出只用一只弹簧测力计的拉力F的图示。

  ⑹比较一下,力F与用平行四边形定则求出的合力F的大小和方向是否相同。

  锦囊妙诀:白纸钉在木板处,两秤同拉有角度,读数画线选标度,再用一秤拉同处,作出力的矢量图。

  交流与思考:每次实验都必须保证结点的位置保持不变,这体现了怎样的物理思想方法?若两次橡皮条的伸长长度相同,能否验证平行四边形定则?

  提示:每次实验保证结点位置保持不变,是为了使合力的'作用效果与两个分力共同作用的效果相同,这是物理学中等效替换的思想方法。由于力不仅有大小,还有方向,若两次橡皮条的伸长长度相同但结点位置不同,说明两次效果不同,不满足合力与分力的关系,不能验证平行四边形定则。

  【误差分析】

  ⑴用两个测力计拉橡皮条时,橡皮条、细绳和测力计不在同一个平面内,这样两个测力计的水平分力的实际合力比由作图法得到的合力小。

  ⑵结点O的位置和两个测力计的方向画得不准,造成作图的误差。

  ⑶两个分力的起始夹角太大,如大于120,再重做两次实验,为保证结点O位置不变(即保证合力不变),则变化范围不大,因而测力计示数变化不显着,读数误差大。

  ⑷作图比例不恰当造成作图误差。

  交流与思考:实验时由作图法得到的合力F和单个测力计测量的实际合力F忘记标注而造成错乱,你如何加以区分?

  提示:由弹簧测力计测量合力时必须使橡皮筋伸直,所以与AO共线的合力表示由单个测力计测量得到的实际合力F,不共线的合力表示由作图法得到的合力F。

  【注意事项】

  ⑴不要直接以橡皮条端点为结点,可拴一短细绳连两细绳套,以三绳交点为结点,应使结点小些,以便准确地记录结点O的位置。

  ⑵使用弹簧秤前,应先调节零刻度,使用时不超量程,拉弹簧秤时,应使弹簧秤与木板平行。

  ⑶在同一次实验中,橡皮条伸长时的结点位置要相同。

  ⑷被测力的方向应与弹簧测力计轴线方向一致,拉动时弹簧不可与外壳相碰或摩擦。

  ⑸读数时应正对、平视刻度。

  ⑹两拉力F1和F2夹角不宜过小,作力的图示,标度要一致。

  交流与思考:如何设计实验探究两力合力随角度的变化规律?如何观察合力的变化规律?

  提示:保持两力的大小不变,改变两力之间的夹角,使两力的合力发生变化,可以通过观察结点的位置变化,判断合力大小的变化情况,结点离固定点越远,说明两力的合力越大。

  【正确使用弹簧秤】

  ⑴弹簧秤的选取方法是:将两只弹簧秤调零后互钩水平对拉,若两只弹簧在对拉过程中,读数相同,则可选;若读数不同,应另换弹簧,直至相同为止。

  ⑵弹簧秤不能在超出它的测量范围的情况下使用。

  ⑶使用前要检查指针是否指在零刻度线上,否则应校正零位(无法校正的要记录下零误差)。

  ⑷被测力的方向应与弹簧秤轴线方向一致,拉动时弹簧不可与外壳相碰或摩擦。

  ⑸读数时应正对、平视刻度。

平行四边形教案 篇2

  教学要求:

  1.运用生活实例和实践操作认识平行四边形,发现平行四边形的基本特征。

  2.学会用不同方法制作一个平行四边形,通过猜想验证发现平行四边形的特征。

  3.在解决实际问题中感受图形与生活的联系,培养学生空间观念和动手实践能力。

  教学重点:

  在制作中发现平行四边形的基本特征。

  教学难点:

  引导学生发现平行四边形的特征。

  教学过程:

  一、生活引入

  1.出示校门口伸缩门照片,问:这张照片你熟悉吗?是哪里?请你观察我们校门口的电动门,你能在上面找到平行四边形吗?谁来指给大家看。对,在这个伸缩门上有许多平行四边形。

  2.师:生活中,你还在哪些地方见过平行四边形呢?(指名说)

  3.师:是的,平行四边形在咱们的生活中无处不在,漂亮的小篮子上,安全网上,花园的栅栏上,学校楼梯的扶手上,三菱汽车的标志上,足球门的网上,以及工人叔叔用的升降架上,各式各样的电动门上都有平行四边形的存在。今天这节课,老师就和大家一起来认识平行四边形。(板书课题)

  二、操作探究

  1.师:看了这么多的平行四边形,想不想自己动手做一个呢?老师为大家准备了一些材料,请你选择其中一种材料,制作一个平行四边形。先独立完成,在小组里说一说你的方法。

  2.师:谁来汇报?你选了那种材料?是怎么制作的?(让学生依次在投影上演示,并介绍制作过程)

  3.讨论:刚才同学们用不同的材料制作了平行四边形,大家制作的这些大小不同的平行四边形的边,有什么共同的特点呢?

  4.下面,请每个小组的同学根据老师的提示进行讨论。

  小组活动:

  (1)仔细观察小组内每个平行四边形,猜想:它们的边有什么共同的特点?组长记录在练习纸上。

  (2)用什么方法去验证你们的猜想?怎样操作?

  (3)通过观察,操作,验证,你们的结论是什么?

  5.师:哪个小组来汇报?首先说你们的猜想是?怎样验证的?(让学生在投影上操作演示)你的结论是什么?(根据学生回答板书)

  6.师:同学们刚才通过观察,操作,验证了平行四边形边的'特征,我们可以用一句话概括它的特征是:两组对边分别平行且相等。(板书)对边是指?(课件演示)谁再来说说,平行四边形有什么特点呀?多指名几人说。

  7.师:要看一个四边形是不是平行四边形,就要看?(多指名几人说)下面大家来判断,这里哪些图形是平行四边形?拿出练习纸,完成想想做做第一题,先独立完成,再说说理由,你是怎么判断的。

  三、探索平行四边形与长方形的相同点与不同点。

  1.师:这节课,我们认识了平行四边形,老师手上的这张纸片是什么形状的?现在我想让它变成一张长方形纸片,我该怎么办?请大家帮一帮我。小组操作。

  2.指名汇报,你是怎样剪的?谁来说说它的特征是什么?

  3.刚才我们把平行四边形变成了长方形,下面我们再做个游戏,让长方形变成平行四边形,想玩吗?

  四、小结,并认识平行四边形的不稳定性。

  1.通过这节课的学习,你对平行四边形有哪些认识?

  2.平行四边形对我们的生活有哪些帮助呢?它还有什么特征呢?请看。现在你知道为什么校门口的电动门要做成由许多个平行四边形组成的了吗?(观看电动门伸缩过程)你还能举出更多的例子吗?大家课后做个有心人,搜集相关的资料吧。

平行四边形教案 篇3

  (一)教学目标

  1.使学生理解垂直与平行的概念,会用直尺、三角尺画垂线和平行线。

  2.使学生掌握平行四边形和梯形的特征。

  3.通过多种活动,使学生逐步形成空间观念。

  (二)教材说明和教学建议 教材说明

  本单元是在学生学习了角的度量的基础上教学的,内容包括:同一平面内两条直线的特殊位置关系,即垂直与平行;平行四边形和梯形的认识。学生在前面已经学习了有关四边形的知识,对平行四边形也有了初步的认识,这里着重给出的是平行四边形的特征以及与正方形、长方形的关系。梯形在这里是第一次正式出现,教材除教学梯形的特征外,还注意说明与平行四边形的联系和区别。

  例题

  具体内容及要求

  垂直与平行

  例1

  认识同一平面内两条直线的特殊位置关系:平行和垂直。

  例2

  学习画垂线,认识“点到直线的距离”。

  例3

  学习画平行线,理解“平行线之间的距离处处相等”。

  平行四边形和梯形

  例1

  把四边形分类,概括出平行四边形和梯形的特征,探讨平行四边形和长方形、正方形的关系。

  例2

  认识平行四边形的不稳定性,认识平行四边形的底和高,及梯形的的各部分名称。

  学习画高。

  教学建议

  1.关注学生已有的生活经验和知识基础,把握教学的起点和难点。

  教学的任务是解决学生现有的认识水平与教育要求之间的矛盾,为学习而设计教学,是教学设计的出发点,也是归宿。这一单元中涉及的知识点:平行与垂直,平行四边形与梯形等,一方面这些几何图形在日常生活中应用广泛,学生头脑中已经积累了许多表象;另一方面,经过三年的数学学习,也具备了一定的知识基础。这些都是影响学生学习新知最重要的因素。为此,教师必须关注学生已有的生活经验和知识基础,从学生出发,把握教学的起点和难点,根据学生的实际情况,增加或补充一些内容。

  2.理清知识之间的内在联系,突出教学的重点。

  由于数学知识的系统性和严密的逻辑性,决定了旧知识中孕育着新内容,新知识又是原有知识的扩展。教学时,要善于理清知识间的联系,根据教学目标来确定内容的容量、密度和教学的重点,有机地联系单元、全册,乃至整个年级、整个学段的教学内容加以研究。如果把“平行与垂直”这一内容放到整个教材体系中,就不难发现它的学习既需要直线及角的知识做基础,同时又是认识平行四边形和梯形的基础。

  3.注重学用结合,就地取材,充实教材内容。

  尽管教材在素材的选材上尽可能地提供一些现实背景,设计了一些学以致用的习题,如借助于运动场景里的`一些活动器材引出垂直与平行的内容,要求学生思考和讨论怎样测定立定跳远的成绩、怎样修路最近等。但由于教材的容量有限,还需要教师在教学过程中做必要的充实和拓展,使学生理解和认识数学知识的发生和发展过程,进一步认识和体会数学知识的重要用途,增强应用意识。

  4.加强作图的训练和指导,重视作图能力的培养。

  这一单元涉及到许多作图的内容,如画垂线、画平行线、画长方形和正方形、画平行四边形和梯形的高等,对四年级学生来说,这些都有一定的难度,教学时要加强作图的训练和指导,重视作图能力的培养。

  5.本单元可用6课时完成。

平行四边形教案 篇4

  【知识目标】

  1、掌握平行四边形有关概念;

  2、在动手操作实践的过程中,探索并掌握平行四边形的性质。

  【能力目标】

  1、通过探索与证明平行四边形的性质,发展演绎推理的能力;

  2、在证明平行四边形的性质的过程中,体会将平行四边形问题为三角形问题的转化思想.

  【情感态度与价值观】

  在进行探索的活动过程中发展合作交流的意识.

  【数学核心素养目标】

  1、通过操作活动,在发现平行四边形的性质的过程中培养直观想象的数学素养;

  2、通过对性质的证明,进一步提升逻辑推理的数学核心素养.

  教材

  分析

  重点

  掌握平行四边形的概念与性质

  难点

  对平行四边形性质的探究与证明

  教学方法

  引导类比、鼓励操作、启发推理

  学法指导

  探索发现、猜想证明、迁移应用

  教学过程

  一、引入新课

  PPT呈现:类比是伟大的引路人,转化是智慧的思想家.

  几何学习,是一场充满挑战与惊喜的旅行,老师很荣幸今天能和在座的同学们继续我的平面几何之旅.

  回顾我们学过的平面图形:

  直线、射线、线段角三角形?

  同学们推测一下,接着我们会研究那种平面图形?四边形

  我们就从生活中常见的一类特殊的四边形——平行四边形研究起.

  你能举出一些生活中常见的平行四边形实例吗?

  地砖、推拉门、活动衣架、窗格……

  二、实践探究

  1、平行四边形的相关概念

  平行四边形的定义:两组对边分别平行的四边形,叫做平行四边形.

  D

  C

  A

  B

  如图:

  学生活动:邀请学生指导老师画两组分别平行的线段,并上黑板协助老师画图,从而得到平行四边形.

  平行四边形的符号表示:ABCD,读作“平行四边形ABCD”

  (注意表示时,四个顶点A、B、C、D的书写顺序只能按顺时针方向或逆时针方向)

  边、对边、邻边;角、对角、邻角

  对角线:平行四边形不相邻的两个顶点连成的线段叫做它的对角线.

  ABCD的对角线有两条:AC、BD

  2、平行四边形是中心对称图形

  活动:利用平行四边形纸片探索平行四边形的性质

  活动方式:同桌或四人小组合作、讨论交流.

  教具:画好平行四边形的彩纸、透明纸各一张、图钉一枚.

  平行四边形是中心对称图形,两条对角线的.交点是它的对称中心.

  3、平行四边形的性质

  性质1:平行四边形的对边相等.

  已知:如图,四边形ABCD是平行四边形.

  因为四边形ABCD是平行四边形

  所以∠A=∠C,∠B=∠D

  求证:AB=CD,BC=DA.

  证明:连接AC

  因为四边形ABCD是平行四边形

  所以AB∥CD,BC∥DA(平行四边形的定义)

  所以∠1=∠2,∠3=∠4

  在△ABC与△CDA中:

  所以(ASA)

  所以AB=CD,BC=DA

  几何语言:

  因为四边形ABCD是平行四边形

  所以AB=CD,BC=DA

  性质2:平行四边形的对角相等.

  几何语言:

  因为四边形ABCD是平行四边形

  所以∠A=∠C,∠B=∠D

  三、应用迁移

  【例题探究,夯实基础】

  例:已知:如图,在□ABCD中,E,F是对角线AC上的两点,并且AE=CF。

  求证:

  证明:因为四边形ABCD是平行四边形

  所以AB=CD(平行四边形的对边相等)

  AB∥CD(平行四边形的定义)

  所以∠BAE=∠DCF

  在12鈭咥BE/与12鈭咰DF/中:

  因为

  所以(SAS)

  所以BE=DF

  【例题变式,灵活思维】

  变式1:已知:如图,在ABCD中,E,F是对角线AC上的两点,并且AE∥DF。

  求证:

  变式2:已知:如图,在ABCD中,E,F是对角线AC上的两点,并且BE平分∠ABC,DF平分∠ADC.

  求证:

  变式1图变式2图

  【接龙练习,巩固迁移】

  1、如图,四边形ABCD是平行四边形,

  若∠A=130°,则∠B=______,∠C=______,∠D=______;

  若AB=4,AD=5,则BC=__________,CD=________。

  第1题图第2题图

  2、如图,在平面直角坐标系中,□ABCD的三个顶点为A(0,0)、B(4,0)、D(1,2),则顶点C的坐标是_____________。

  3、小强用30米的铁丝围成一个平行四边形的场地(不计接口长度),其中一条边长是10米,则与这条边相邻的边的长度是________米.

  4、如图,在□ABCD中,若BE平分∠ABC,则ED=.

  5、如图,在□ABCD中,AM平分∠BAD,BM平分∠ABC,∠AMB____。

  第4题图第5题图

  【游戏设计,拓展提升】

  四位同学玩传球游戏,三位同学已经站好位置,要求以这四位同学所占位置为顶点,组成平行四边形,请问第四位同学应该站在哪里?

  解:如图,第四位同学可以站在P、Q、M这三个位置.

  四、本课总结

  知识:平行四边形的概念与性质

  探究方法与思想:类比探究,转化思想

  五、作业布置

  必做题:课本P1372、3、4题.

  选做题:将【游戏设计,拓展提升】部分的问题整理在好题本“分类讨论”这一问题中.

  设计意图

  提醒并渗透“类比的方法、转化的思想”.

  提醒学生本节课是几何探究课程.

  本节课是《平行四边形》这一章的章起始课,促使学生对平面图形的学习进行系统性的认识.

  小学已经感知上认识了平行四边形,由学生主动举生活中平行四边形的实例,感受数学源于生活而服务于生活,同时逐渐调动学生主动思考,为接下来的探究热身.

  突出学生课堂主体的地位,加深对平行四边形定义的认识.

  突出重点:

  1、学生通过观察、动手操作,经历平行四边形性质的探索和发现过程,发展合作交流的意识,提升探究能力;

  2、在动手操作额过程中,发现并验证了平行四边形是中心对称图形;

  3、使学生发现平行四边形中有关元素之间的相等关系,获得平行四边形有关性质的猜想.

  突破难点:

  1、学生探索猜想性质是合情推理,而规范证明则是演绎推理,通过规范的几何证明,提升学生的推理论证能力.

  2、转化思想:将四边形问题转化为三角形问题来研究.

  1、引导学生探索并展示多种证明方法.

  2、激励学生分析、解决问题的热情,进一步提升推理论证的能力.

  本例是对所学的平行四边形性质定理的简单应用。教学时让学生先独立思考,再组织学生进行交流。鼓励学生充分表达他们寻求证明思路的过程。

  这两个问题是对例题条件进行变化,结论不变,以促进学生对平行四边形性质的熟练掌握与灵活运用.

  1、这组练习的设计,层层递进,由浅入深,可有效地开发各层次学生的潜能及上进心,实现分类推进的教学思想.

  2、第4题引导学生发现平行四边形一条角平分线可以构造出等腰三角形;

  3、第5题引导学生发现平行四边形两个邻角的角平分线可以构造出直角三角形三角形.

  (此问题根据实际授课情况,可删减)

  1、游戏情境,激发学生兴趣;

  2、此问题有三种情况,体现分类讨论的思想,促进学生思考问题的全面性;

  1、作业一部分是必做题,体现新课标下落实“学有价值的数学”,达到“人人都能获得必需数学”,另一部分是选做题,让“不同的人在数学上得到不同的发展”.

  2、选做部分为了促进学生养成分类梳理数学问题的习惯.

【平行四边形教案】相关文章:

平行四边形优秀教案03-08

平行四边形面积教案02-10

《认识平行四边形》教案03-30

平行四边形教案6篇05-18

平行四边形教案9篇05-21

精选平行四边形教案三篇05-22

【精选】平行四边形教案四篇05-22

平行四边形教案三篇05-11

精选平行四边形教案9篇05-26

平行四边形教案3篇05-27