平行四边形教案

时间:2024-08-05 12:19:48 教案 我要投稿

平行四边形教案范文合集9篇

  作为一名无私奉献的老师,有必要进行细致的教案准备工作,教案是教学活动的依据,有着重要的地位。我们该怎么去写教案呢?以下是小编收集整理的平行四边形教案9篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

平行四边形教案范文合集9篇

平行四边形教案 篇1

  一、教学目标:

  1、让学生知道平行四边形面积公式的推导过程,以平行四边形与长方形关系为基础,引导学生通过动手操作和观察、比较,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积或是解决一些简单的实际问题。

  2、培养学生想象力、创造力,及用转化的方法解决新的问题的能力。

  3、培养学生自主学习的能力。

  4、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

  二、教学重点:

  平行四边形面积的计算公式的推导及计算。

  三、教学难点:

  平行四边形面积计算公式的推导过程。

  四、教学用具:

  长方形、平行四边形硬纸片、剪刀、直尺

  教学过程:

  一、引出主题:

  师:大家知不知道我们学校正在将操场隔壁的地方改造为校园一角,专门留出两个空地作为我们同学们的学农小基地(在黑板上贴出两个图案,一块是长方形——甲地,一块是平行四边形——乙地)。下面我们就看一下这两块空地是什么形状的?学校啊,又决定将甲地分给四年级,乙地分给五年级负责除草,那么大家知道哪一个年级负责地方要大一点呢?

  师:现在我们先看一下甲地。我们要求这块长方形地的面积,只要量出什么啊?

  生:长方形的长和宽(点出长、宽)。

  师:现在老师已经量出来长15米、宽10米,那么它的面积是什么?

  生:(计算)150平方米。(要求学生回忆起长方形的面积公式,并运用公式计算出这个长方形的面积。)(板书:长方形面积公式)

  师:同学们现在都能很熟练地计算出长方形的面积啦!那么,这块平行四边形地的面积是多少啊?我们该怎样计算呢?这就是今天我们要一起探讨的问题啦!(板书:平行四边形的面积)

  二、动手操作(得出公式):

  师:以前我们是用面积器量数出长方形有多少个小格子或是得出长方形的长和宽来用面积公式来算出了长方形的面积。那我们可不可以运用以前的知识或是我们的经验,想出计算这个平行四边形的面积的方法呢?有哪位同学已经想到办法来?

  生:用剪刀沿着平行四边形的高剪,再拼成长方形,再用尺子量出底(长)18厘米,高(宽)10厘米。面积是180平方厘米。(让学生把操作展示给全班同学看)

  师:这位同学很聪明,他是沿着高来剪,再拼成一个长方形。那老师现在再问你一个问题,你为什么要剪拼成长方形?

  生:因为长方形的长和宽与原来平行四边形的底和高相等,而长方形面积我们会求。

  三、得出结论:

  师:沿着这条垂线把平行四边形剪成了一个三角形和一个梯形,把三角形移到梯形的`一边,就变成了长方形。拼成的长方形的长与平行四边形的底相等,宽与平行四边形的高相等。因为长方形面积=长×宽(板书),所以我们推导出平行四边形面积=底×高(板书)。我们称这种方法为“割补法”(板书)。如果我们用s来表示平行四边形的面积,a来表示平行四边形的底,h来表示平行四边形的高,你能自己写出平行四边形的字母公式吗?

  生:s=a×h

  师:我们还可以将这条公式缩写为:s=a·h或者是s=ah。

  四、巩固提高:

  练习:一块平行四边形钢板,底为4.8厘米,高为3.5厘米。

  它的面积是多少?(结果保留整数。)

  解答:4.8×3.5=16.8(平方厘米)≈17(平方厘米)

  五、小结:

  面对着求平行四边形面积的问题,我们利用割补的方法把平行四边形转化成学过的长方形,用旧知识解决了新问题,以后我们还要用这种思想方法继续学习其他图形的面积计算。

平行四边形教案 篇2

  教学目标:

  (1)通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积,培养学生初步的逻辑思维能力和空间观念。

  (2)能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。

  教学重点:通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积。

  教学难点:能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。

  教学准备:教具、投影。

  教学过程:

  一、复习准备:

  1.平行四边形、三角形、梯形的概念。

  2.平行四边形、三角形的性质。

  3.各图形的'对称情况。

  4.图形的大小用面积来表示。 (引人新课)

  二、新授

  1.投影,并观察,填书本P1的空格

  2.操作:用割补法把平行四边形拼成长方形。

  3.量一量长方形的长和宽与平行四边形的底和高有怎样的关系?

  4.得出:

  长方形的面积= 长 × 宽

  平行四边形的面积=( )×( )

  5.怎样计算下面图形的面积?

平行四边形教案 篇3

  教材分析

  本节课既是七年级平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础。本节课是在学生掌握了平移等知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用。

  学情分析

  八年级学生有一定的.自学、探索能力,求知欲强。并且,学生 在小学里已经初步学习过平行四边形,对平行四边形有直观的感知和认识。在掌握平行线和相交线有关几何事实的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。借助于远教资源的优势,能使脑、手充分动起来,学生间相互探讨,积极性也被充分调动起来。在此基础上学习平行四边形的性质,可以比较自然地得出平行四边形的性质。

  教学目标

  ㈠、知识与技能:

  1、理解并掌握平行四边形的定义;

  2、掌握平行四边形的性质定理;

  3、理解两条平行线的距离的概念;

  4、培养学生综合运用知识的能力;

  ㈡、过程与方法:经历探索平行四边形的有关概念和性质的过程, 发展学生的探究意识和合情推理的能力。

  ㈢、情感态度与价值观:培养学生严谨的思维和勇于探索的思想意识,体会几何知识的内涵与实际应用价值。

  教学重点和难点

  重点:平行四边形的定义,平行四边形对角、对边相等的性质以及性质的应用。

  难点:运用平行四边形的性质进行有关的论证和计算。

平行四边形教案 篇4

  教学目标

  1.使学生掌握平行四边形的意义及特征,了解其特性,能够正确画出底所对应的高.

  2.通过观察、动手操作,培养学生抽象概括能力和初步的空间观念.

  教学重点

  掌握平行四边形的意义及特征.

  教学难点

  理解平行四边形与长方形、正方形的关系.

  教学过程

  一、复习准备.

  我们已经学过一些几何图形,观察一下这些图形有什么共同特点?

  在明确它们是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形.

  教师提问:我们学过哪些四边形呢?

  学生举例.

  说说哪些物体表面是平行四边形?

  教师出示下图,让学生初步感知平行四边形.

  二、学习新课.

  1.理解平行四边形的意义.

  首先出示一组图形.

  教师提问:这些图形是什么形?它们有什么特征?

  (1)看到这个名称你能想到什么?(板书:平行、四边形)

  教师提问:你认为什么是四边形?你学过的什么图形是四边形的?

  (2)动手测量.

  指名到黑板上用三角板检验一下,每个图形的对边怎样.

  (3)抽象概括.

  根据你测量的结果,能说说什么叫平行四边形吗?

  小组先讨论,再让到黑板上测量的同学说出检验与测量的结果,从而引出平行四边形的确切定义.(板书:两组对边分别平行的四边形叫做平行四边形.)

  教师强调说明:只要四边形每组对边分别平行就能确定它的两组对边相等,因此平行四边形的定义是“两组对边分别平行的四边形”.

  (4)反馈:判断下面图形哪些是平行四边形?【演示课件“平行四边形”,出示反馈练习】

  2.平行四边形的特征和特性.

  (1)教师演示.

  教师拿一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉.引导学生观察两组对边有什么变化?拉成了什么图形?什么没有变?

  学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角.

  (2)动手操作.

  学生自己动手,把准备好的长方形框拉成平行四边形,并测量两组对边是否还平行.

  (3)归纳平行四边形特性.

  根据刚才的实验、测量,引导学生概括出:平行四边形具有不稳定性.(板书:易变形)

  (4)对比.

  三角形具有稳定性,不容易变形.平行四边形与三角形不同,容易变形,也就是具有不稳定性.

  这种不稳定性在实践中有广泛的应用.你能举出实际例子来吗?

  (如汽车间的保护网,推拉门、放缩尺等.)

  3.学习平行四形的底和高.

  (1)认识平行四边形的底和高.

  教师边演示边说明:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高.这条对边叫做平行四边形的底.

  (2)找出相应的底和高.【继续演示课件“平行四边形”】

  引导学生观察:图中有几条高?它位相对应的底各是哪条线段?

  使学生明确:从B点画高,它的底是CD;从D点画高,它的底是BC.

  (3)画平行四边形的高.【继续演示课件“平行四边形”】

  教师说明:平行四边形高的画法与三角形画高的方法基本相同,都用过直线外一点画已知直线的垂线的方法.从一条边上任意一点都可以向它的对边画高,但通常是从一个角的.顶点向它的对边画高.这里高要画在平行四边形内,不要求把高画在底边的延长线上.

  ①教师利用长方形框,拉动长方形的边,使其变成不同的平行四边形.(还可以把平行四边形变成长方形)

  引导学生比较长方形和平行四边形的异同点,使学生明确:

  相同点是两组都分别平行,所以长方形也具有平行四边形的特征,也属于平行四边形.不同点是长方形的四个角都是直角,所以把长方形看作是特殊的平行四边形.

  ②引导学生比较正方形和平行四边形的相同点和不同点.

  使学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的平行四边形.因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形可看作是特殊的长方形.

  ③这三种图形之间的关系可以用集合图来表示【继续演示课件“平行四边形”】

  三、巩固练习.【继续演示课件“平行四边形”】

  1.判断下列图形哪些是平行四边形?

  2.指出平行四边形的底,并画出相应的高.

  3.在钉子板上围出不同的平行四边形.

  4.数一数下图中有( )个平行四边形.

  四、教师小结.

  1.提问:通过今天的学习,你都学会了什么?(平行四边形的意义,特征及特性)

  2.组织学生对所学知识提出质疑,并解疑.

  3.教师提问:我们已学过的长方形、正方形是平行四边形吗?它们有什么关系?(因为长、正方形也具备平行四边形的特点所以长、正方形是特殊的平行四边形)

  五、布置作业.

  1.用一套七巧板拼出不同的平行四边形.

  2.在下面每个平行四边形中分别画出两条不同的高。

平行四边形教案 篇5

  教学内容:练习十九的第11~15题。

  教学目的:通过练习,使学生进一步熟悉平行四边形、三角形、梯形面积的计算公式,提高计算面积的熟练程度。

  教具准备:将复习题中的平行四边形、三角形、梯形画在小黑板上。用厚纸做一个平行四边形、两个完全一样的三角形和两个完全相同的梯形。

  教学过程:

  一、复习平行四边形、三角形、梯形面积的计算公式。

  出示下列图形:

  问:这3个图形分别是什么形?(平行四边形、三角形和梯形)

  平行四边形的面积怎样计算?公式是什么?(学生回答后,教师板书:S=ah)

  平行四边形的'面积计算公式是怎样推导出来的?(教师出示一个平行四边形,让一学生说推导过程,教师边听边演示)

  三角形的面积怎样计算的?公式是什么?(学生回答后,教师板书:S=ah÷2)

  为什么要除以2?(学生回答,教师出示两个完全相同的三角形,演示用两个三角形拼摆一个平行四边形的过程)

  梯形的面积是怎样计算的?公式是什么?(学生回答后,教师板书:S=(a+b)h÷2)

  梯形的面积计算公式是怎样推导出来的?(学生回答,教师演示用两个完全相同的梯形拼摆一个平行四边形的过程。)

  量出求这3个图形面积所需要的线段的长度。(让学生到黑板前量一量,并标在图上。让每个学生在自己的练习本上计算出这3个图形的面积,算完后,集体核对答案)

  二、做练习十九中的题目。

  1、第12题,先让学生说一说题中的图形各是什么形,再让学生独立计算。教师注意巡视,了解学生做的情况,核对时,进行有针对性的讲解。

  2、第13题和第15题,让学生独立计算,做完后集体订正。

  3、第18题,学生做完后,可以提问:在梯形中剪下一个最大的三角形,你是怎样剪的?

  这个最大的三角形是唯一的吗?为什么?(不是唯一的,因为以梯形的下底为三角形的底,顶点在梯形的上底上的三角形有无数个,它们的面积是相等的。)

  4、练习十九后面的思考题,学生自己试做。教师提示:这道题可以用梯形面积减去以4厘米为底,以12厘米为高的三角形的面积来计算;也可以用含有未知数X的等式来计算。

  三、作业。

  练习十九第11题和第14题。

  课后小结:

平行四边形教案 篇6

  四年级数学上册《平行四边形、梯形特征》教学设计教学目标:

  1、学生理解平行四边形和梯形的概念及特征。

  2、使学生了解学过的所有四边形之间的关系,并会用集合图表示。

  3、通过操作活动,使学生经历认识平行四边形和梯形的全过程,掌握它们的特征。

  4、通过活动,让学生从中感受到学习的乐趣,体会到成功的喜悦,从而提高学习的兴趣。

  教学重点:理解平行四边形和梯形的概念及特征。了解学过的所有四边形之间的关系,并会用集合图表示。

  教学难点:理解平行四边形和梯形的概念及特征。用集合图表示学过的所有四边形之间的关系。

  教具准备:图形、剪子、七巧板。

  教学过程:

  一、创设情景 感知图形

  1、出示校园图(70页)在我们美丽的校园中,你能找到那些四边形?

  2、画出你喜欢的一个四边形。说一说什么样的图形是四边形?

  展示学生画出的四边形,请学生标出它们的名称。

  长方形 平行四边形

  梯形 正方形

  3、小组交流:从四边形的特点来看,四边形可以分成几类?学生讨论交流。

  二、探究新知

  1、归纳平行四边形和梯形的概念。

  有什么特点的图形是平行四边形?(两组对边分别平行的四边形叫做平行四边形。)

  强调说明:只要四边形的每组对边分别平行,就能确定它的每组对边相等。因此平行四边形的定义是两组对边分别平行的四边形。

  提问:生活中你见过这样的图形吗?它们的外形像什么?

  这些图形有几条边?几个角?是什么图形?

  这几个四边形有边有什么特点?

  它是平行四边形吗?

  你们在量这些图形时,是否发现它们都有一个共同的特点?如果有,是什么?

  只有一组对边平行的四边形叫做梯形。

  5、现在你有什么问题吗?

  长方形和正方形是平行四边形吗?为什么?

  6、用集合图表示四边形之间的关系。我们学过的长方形、正方形、平行四边形、刚刚认识的梯形,你能用这个集合圈来表示他们的'关系吗?

  7、判断:

  长方形是特殊的平行四边形。( )

  两个完全一样的梯形可以拼成一个平行四边形。( )

  一个梯形中只有一组对边平行。( )

  三、巩固练习。

  1、在梯形里画两条线段,把它分割成三个三角形。你有几种画法?学生展示

  2、七巧板拼一拼

  用两块拼一个梯形

  用三块拼一个梯形

  用一套七巧板拼一个平行四边形

  1、 下面的图形中有( )个大小不同的梯形。

  2、 用两个完全一样的梯形,能拼成一个平行四边形吗?

  把1张梯形纸剪一次,再拼成一个平行四边形。

  拿一张长方行纸,不对折,剪一次,再拼出一个梯形。

  四、课堂小结:通过这节课的学习,你有何体会和收获?

  五、作业:

  1、把一个平行四边形剪成两个图形,然后拼成一个三角形,这个三角是什么三角形?有几种剪拼的方法?

  2、把一张平行四边形的纸剪一下,分成两个梯形,有多少种剪法?

平行四边形教案 篇7

  教学准备

  教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.

  学生准备:复习平行四边形性质;学具:课本“探究”内容.

  学法解析

  1.认知题后:学习了三角形全等、平行四边形定义、性质以后学习本节课内容.

  2.知识线索:

  3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.

  教学过程

  一、回顾交流,逆向思索

  教师提问:

  1.平行四边形定义是什么?如何表示?

  2.平行四边形性质是什么?如何概括?

  学生活动:思考后举手回答:

  回答:1.两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)

  回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).

  教师归纳:(投影显示)

  平行四边形【活动方略】

  教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,然后再进行小组汇报,教师同时也拿出教具同学在一起探索.

  学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:

  (1)将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;

  (2)若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的.顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.

  (3)将两条等长的木条平行放置,另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。

平行四边形教案 篇8

  教学目的

  1.使学生掌握用平行四边形的定义判定一个四边形是 平行四边形;

  2.理解并掌握用二组对边分别相等的四边形是平行四 边形

  3.能运这两种方法来证明一个四边形是平行四边形。

  教学重点和难点

  重点:平行四边形的判定定理;

  难点:掌握平行四边形的性 质和判定的区别及熟练应用。

  教学过程

  (一)复习提问:

  1. 什么 叫平行四边形 ?平行四边形有什么性质?(学生口答,教师板书)

  2. 将 以上的性质定理,分别用命题形式 叙述出来。(如果……那么……)

  根据平行四边形的定义,我们研究了平行四边形的`其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平 行四边形性质定理的逆命题是否成立?

  (二)新课

  一.平行四边形的判定:

  方法一(定义法):两组对边分别平行的四边形的平边形。

  几何语言表达定义法:

  ∵AB∥C D,AD∥BC,∴四边形ABCD是平行四边形

  解析:一个四边形只要其两组对边 分别互相平行,

  则可判定这个四边形是一个平行四边形。

  活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。

  方法二:两组对边分别相等的四边形是平行四边形。

  设问:这个命题的前提和结论是什么?

  已知:四边形ABCD中,AB=CD,AD=BC

  求 证:四边ABCD是平行四边形。

  分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易 证三角形全等。(见图1)

  板书证明过程。

  小结:用几何语言 表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:

  判定一:二组对边分别相等的四边形是平行四边形

  ∵AB=CD,AD=BC, ∴四边形A BCD是平行四边形

  练习:课本P103练习题第1题。

  例题讲解:

  例1 已知:如图3,E、F分别为平行四边形ABCD两边AD、BC的中点,连结BE、DF。

  求证:

  分析:由我们学过平行四边形的性质中,对角相 等,得若证明四边形EBFD为平行四边形,便可得到 ,哪么如何证明该四边形为平行边形呢?可通过证 明ΔABE≌ΔCDF得BE=DF;由AD=BC ,E、F分别为AD和BC的中点得ED=FB。

  练习:2. 已知如 图7, E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA上的点,且AE=CG,BF=DH。

  求证:四边 形EFGH是平行四边形。

平行四边形教案 篇9

  教学目标:

  1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

  2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

  3.对学生进行辩诈唯物主义观点的启蒙教育.

  教学重点:理解公式并正确计算平行四边形的面积.

  教学难点:理解平行四边形面积公式的推导过程.

  学具准备:每个学生准备一个平行四边形。

  教学过程:

  1、什么是面积?

  2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?

  一、导入新课

  根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

  二、讲授新课

  (一)、数方格法

  用展示台出示方格图

  1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

  2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

  请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

  2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?

  小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

  (二)引入割补法

  以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

  (三)割补法

  1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

  2、然后指名到前边演示。

  3、教师示范平行四边形转化成长方形的过程。

  刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的`直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

  ①先沿着平行四边形的高剪下左边的直角三角形。

  ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

  ③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

  4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

  ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

  ②这个长方形的长与平行四边形的底有什么样的关系?

  ③这个长方形的宽与平行四边形的高有什么样的关系?

  教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

  5、引导学生总结平行四边形面积计算公式。

  这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)

  那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)

  6、教学用字母表示平行四边形的面积公式。

  板书:S=a×h,告知S和h的读音。

  说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

  (6)完成第81页中间的“填空”。

  7、验证公式

  学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。

  条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

  (四)应用

  1、学生自学例1后,教师根据学生提出的问题讲解。

  3、判断,并说明理由。

  (1)两个平行四边形的高相等,它们的面积就相等()

  (2)平行四边形底越长,它的面积就越大()

  4、做书上82页2题。

  三、体验

  今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

  四、作业

  练习十五第1题。

  五、板书设计

  平行四边形面积的计算

  长方形的面积=长×宽 平行四边形的面积=底×高

  S=a×hS=ah或S=ah

【平行四边形教案】相关文章:

平行四边形优秀教案09-11

《认识平行四边形》教案08-26

平行四边形教案范文09-30

平行四边形面积教案07-20

平行四边形的认识教案07-30

【精选】平行四边形教案四篇05-22

精选平行四边形教案9篇05-26

平行四边形教案6篇05-18

平行四边形教案9篇05-21

精选平行四边形教案3篇05-25