精选可能性教案模板十篇
作为一名为他人授业解惑的教育工作者,总归要编写教案,教案有助于学生理解并掌握系统的知识。优秀的教案都具备一些什么特点呢?下面是小编帮大家整理的可能性教案10篇,欢迎大家分享。
可能性教案 篇1
统计和可能性总备:
本单元是在学生学习了简单的统计表,会求算术平均数、初步理解简单事件发生的可能性的基础上继续学习比较复杂的统计表、加权平均数、中位数、众数以及简单事件发生的可能性问题等知识。
教学目标:
(知识能力情感价值观)
1、进一步学习统计表,会填写较复杂的统计表;了解统计表中的合计、总计的具体意义;会根据统计表中所提供的数据,回答一些简单的问题;能对统计表进行简单的分析。
2、进一步理解统计中平均数的意义和作用;能根据所给数据求加权平均数,并能解释结果的实际意义。
3、通过一些简单事件,理解中位数、众数的意义,会求数据的中位数、众数。
4、通过生活中的实例,进一步体会事件发生的可能性,初步尝试根据给定的可能性设计一些简单的游戏。教学重点: 进一步学习统计表,会填写较复杂的统计表;了解统计表中的合计、总计的具体意义;会根据统计表中所提供的数据,回答一些简单的问题;能对统计表进行简单分析。
教学难点:
1、通过一些简单事件,理解中位数、众数的意义,会求数据的中位数、众数。
2、通过生活中的实例,进一步体会事件发生的可能性,初步尝试根据给定的'可能性设计一些简单的游戏。
突破重难点的方法与手段: 让学生深入生活去获取信息,学会整理和分析。教师重视安排好学生的社会实践活动。
统计和可能性
平均数
教学目标:
1、进一步理解统计中的平均数的意义和作用。
2、能根据所给数据求加权平均数,并能解释结果的实际意义。
教学重点:
能根据所给数据求加权平均数。
教学难点:
能运用所学的知识解决实际问题。
教学过程:
一、复习求简单的平均数。
1、引导学生思考
①从这个统计表中你能了解到哪些情况?
②还准备知道哪些情况?
2、随着问题的提出、自然地进行解决。五年级平均每人得多少分?(用五年级学生的得分总数除以五年级学生的总人数)
可能性教案 篇2
教材说明
本单元的学习内容主要有两个方面:一是事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的概率;二是理解中位数的意义,会求数据的中位数,在统计分析中能根据实际情况合理选择适当的统计量来描述数据的特征。
1.事件发生的可能性以及游戏规则的公平性。
关于“可能性”这一内容,本套教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的。第二次就在本单元,本单元内容是在三年级上册的基础上的深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,不但能用恰当的词语(如“一定”“不可能”“可能”“经常”“偶尔”等)来表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。
根据学生的年龄特点和认知水平,本单元安排的是简单的等可能性事件,等可能性事件是概率论中研究得最早,在社会生活中又广泛存在的一种随机现象,它满足以下两个条件:(1)试验的全部可能结果只有有限个,比如说为n个。(2)每个试验结果发生的可能性是相等的,都是1/n。等可能性事件在概率论发展初期即被人们所关注和研究,故这类随机现象通常又被称为古典概型,本单元的例1、例2和例3及相关练习都属于古典概型问题。
等可能性事件与游戏规则的公平性是紧密相联的,因为一个公平的游戏规则本质上就是参与游戏的各方获胜的机会均等,用数学语言描述即是他们获胜的可能性相等。因此,教科书在编排上就围绕等可能性这个知识的主轴,以学生熟悉的游戏活动展开教学内容,使学生在积极的参与中直观感受到游戏规则的公平性,并逐步丰富对等可能性的体验,学会用概率的思维去观察和分析社会生活中的事物。此外,通过探究游戏的公平性,还可在潜移默化中培养学生的公平、公正意识,促进学生正直人格的形成。
2.中位数的统计意义及计算方法。
学生在三年级已经学过平均数(主要是指算术平均数),知道平均数是描述数据集中程度的一个统计量,用它来表示一组数据的情况,具有直观、简明的特点。所以教科书在引入中位数时,就以平均数为参照物,说明当一组数据中有个别数据偏大或偏小时,用中位数来代表该组数据的一般水平就比平均数更合适。这样编排,不但新旧知识过渡自然,便于学生理解和掌握,而且清晰地阐明了中位数的统计意义,即中位数在数值大小上处于一组数据的最中间,主要反映了统计数据的中等水平,并且不受偏大或偏小等极端数据的影响,对人们了解事物发展的中等水平很有帮助。
在介绍中位数的计算方法时,教科书在编排上采取了由易至难,逐步深入的方式。如例4和例5,列出的一组数据都是7个,即奇数个数据,从而最中间的那个数据就为中位数,可直接在数据组中找出;然后把7个数据变为8个,最中间就有两个数据,引出当数据个数为偶数个时计算中位数的方法。
教科书在选材上特别注意联系学生的生活实际,如掷沙包、跳远、跳绳等活动,都是学生几乎天天参与的游戏,可使学生在活动过程中完成数据的收集和整理,也便于教师组织教学。
教学建议
1.注重学生对等可能性思想的理解,淡化纯概率数值的计算。
在自然界和人类社会中存在两类不同的现象:确定性现象(即必然事件和不可能事件)和随机现象(即不确定事件)。概率论就是研究随机现象的规律性的数学分支。在小学阶段设置简单的“概率”内容,主要是为了培养学生的随机思维,让其学会用概率的眼光去观察大千世界,而不仅仅是以确定的、一成不变的思维方式去理解事物。因此,在可能性知识的教学中,应注意加强对学生概率素养的培养,增强学生对随机思想的理解,而不要把丰富多彩的可能性内容变成了机械的计算和练习。
在教学中,教师还应注意结合学生熟悉的游戏、活动(如掷硬币、玩转盘、摸卡片等),让学生亲自动手试验,在试验中直观体验事件发生的可能性,探究游戏规则的公平性与等可能性事件的关系等,使其经历知识的'形成过程。
2.加强学生对中位数在统计学意义上的理解。
中位数和平均数一样,也是反映一组数据集中趋势的一个统计量。教学时应注意结合学生已经很熟悉的平均数,对比教学,以帮助学生弄清两者的联系和区别,使他们明白:平均数主要反映一组数据的总体水平,中位数则更好地反映了一组数据的中等水平(或一般水平)。
在教学中,教师应选择恰当的数据组,以反映中位数在统计学上的意义和价值,在与平均数的对比中体现中位数的特点。如例4、例5的数据组中,因个别数据严重偏大,影响到平均数也偏大,导致平均数不能很好地代表该组数据的总体水平,而中位数的优势正好能够避免一些偏大或偏小数据的影响,因而在这样的场合中,中位数就能很好地反映一组数据的一般水平。
另外,因中位数在一组数据的数值排序中处于最中间的位置,故其在统计学分析中也常常扮演着“分水岭”的角色。人们由中位数可对事物的大体趋势进行判断和掌控。如某城市一个月的空气污染指数的中位数值是70(空气质量为良),则说明该城市这个月超过一半的时间空气质量都为良。所以在教学中,教师可组织学生开展调查活动,然后再利用中位数的这一特点进行初步的统计分析。如调查全班同学的睡眠时间,如果中位数显示睡眠不足,则表明全班至少有一半的同学睡眠不足,据此就可建议大家少看电视和按时作息等。
可能性教案 篇3
一、教学目标
(一)知识与技能
进一步体会不确定现象的特点及事件发生的可能性的大小。
(二)过程与方法
经历事件发生的可能性大小的探索过程,能根据试验的统计结果进行判断和推测,知道事件发生的可能性的大小与物体的数量有关,进一步体会随机现象的统计规律性。能根据数据推测事件发生的可能性的大小,并初步感受事件发生的等可能性。
(三)情感态度和价值观
感受数学与生活的密切联系。进一步培养学生的求实态度和科学精神。
二、教学重难点
教学重点:通过试验和推测,知道事件发生的可能性的大小与物体的数量有关。
教学难点:根据试验的结果,确定试验中相关物体的数量的多少。
三、教学准备
每组一个盒子(里面装有17个红色乒乓球和3个黄色乒乓球),多媒体课件。
四、教学过程
(一)复习旧知,激励导入
1.导入谈话。
同学们,通过前面的学习我们知道了,生活中有的事情可能发生,有的事情不可能发生,事情发生的可能性也有大有小。今天这节课我们将进一步研究可能性的有关问题。
2.复习旧知。
(1)出示问题。(教师实物演示或PPT课件演示。)
(2)学生讨论回答问题。
3.揭示课题。
(1)教师揭示课题:看来啊,同学们认为可能性有大有小,而且这个大小和物体的数量有关。到底是不是这样的呢?今天我们将继续研究这个问题。
(2)板书课题:可能性。
【设计意图】在新课开始前设计小明摸球的问题情境,通过对这个问题的思考和讨论,既引导学生复习了前面学习的事件的确定性与不确定性事件发生的可能性的大小的知识,又顺势导入了对事件发生可能性的大小和物体的数量有关这一新问题的研究。
(二)试验猜想,探究新知
1.初步猜想。
(1)老师这里有一个盒子,里面有红色、黄色两种颜色的小球。如果从里面摸球的话,猜一猜,摸到哪种颜色的球的可能性大呢?(教师实物演示或PPT课件演示。)
(2)教师提问:说一说,你为什么这样猜呢?
(3)教师:我们的猜测准确吗?怎样验证呢?(教师组织学生集体讨论。)
2.试验验证。
(1)通过之前的学习我们知道,仅凭猜测得到的结果不一定是准确的,要通过实际操作、摸一摸才能验证。那么,在摸一摸的过程中,我们要注意什么呢?(PPT课件演示。)
注意事项:摸球的次数要足够多;每次摸球前要将盒子里的球摇匀;确定试验记录的方法;做好小组合作分工,有人负责摸球,有人负责记录球的颜色
(2)学生分小组开始摸球试验,试验前请仔细阅读试验要求。(PPT课件演示。)
(3)请各个小组展示、交流试验结果。
(4)统计各个小组的试验结果。(PPT课件演示,现场收集数据,填写统计表。)
3.总结提炼。
(1)总结。(PPT课件演示。)
①说说你们每次摸球,都摸出了哪些颜色的球?
②观察这几个组的统计数据,你发现各个小组的试验结果都一样吗?有什么共同点呢?
③想一想,为什么每个小组都是摸出红球的次数多,摸出黄球的次数少?盒子里的红球和黄球数量相等吗?
④同学们都认为之所以摸出红球的次数多,是因为盒子里的红球数量多而黄球数量少,是不是这样呢?让我们打开盒子来验证一下!
(2)提炼。(PPT课件演示。)
①引导提问:通过刚才的摸球游戏,你能得到什么结论?(PPT课件演示。)
②归纳概括:看来,在每次摸球的时候,每个球都有被摸出的可能,每次摸出的球的颜色是不确定的,可能摸出红球,也可能摸出黄球。红球的数量多,摸出红球的可能性大;黄球的数量少,摸出黄球的可能性就小。
4.深化小结。
(1)引发思考。(PPT课件演示。)
(2)教师小结:看来,可能性的大小和物体的数量有关。物体的数量越多,可能性越大;物体的数量越少,可能性越小。(PPT课件演示。)
【设计意图】让学生通过已有的知识经验自行进行试验,并通过对试验数据的`总结与对比,初步体验和发现可能性的大小的规律。同时进一步认识到,只有根据试验中获得的数据去进行判断才是有科学依据的,培养学生的求实态度和科学精神。
(三)实践应用,反馈提升
1.基本练习。
(1)完成教材第46页做一做第1题。
①教师谈话:刚才通过试验我们知道了,摸出两种物体的可能性的大小与物体的数量有关,那三种物体的情况呢?可能性的大小是否也和物体的数量有关呢?
②出示问题。(PPT课件演示。)
③引导思考。(PPT课件演示。)
a. 想一想,可能会摸出什么颜色的棋子?
b. 摸出哪种颜色棋子的可能性最大?
c. 你能设计一个试验验证你的猜想吗?想一想,设计这个试验时需要注意什么?
d. 小组自主验证。(摸一摸,验证一下,做好记录。)
e. 你的猜想对吗?为什么猜得这么准确? 根据试验,你得出了什么结论?
(2)完成教材第46页做一做第2题。
①教师谈话:生活中应用可能性的地方是很多的,比如在抛硬币的游戏中就存在可能性的问题。
②出示问题。(PPT课件演示。)
③引导思考。(PPT课件演示。)
④拓展介绍。(PPT课件演示。)
2.变式、开放练习。
(1)完成教材第48页练习十一第9题。
①出示问题。(PPT课件演示。)
②猜一猜硬币可能在哪个盒子里?
③统计猜的结果。(PPT课件演示。)
④观察统计结果,你发现了什么?为什么?
(2)完成教材第49页练习十一第10题。
①出示问题。(PPT课件演示。)
②交流涂色的结果。
③小结:这些涂色方法各不相同,但是它们的共同点是什么?
【设计意图】本环节让学生应用可能性的大小与物体的数量有关这一数学知识去解决生活中的实际问题,在实践运用中强化对随机现象的统计规律的认识,提升学生的实践操作、总结归纳以及运用数学知识解决实际生活问题的能力。
(四)全课总结,提升认识
通过这节课的学习,你有什么收获?
(五)作业练习
完成教材第49页练习十一第11题。
可能性教案 篇4
[教学内容]
教材第94、95页的内容,第96页练习十八的第1、2题。
[教学目标]
1、使学生初步理解并掌握用分数表示可能性大小的基本思考方法,会用分数表示简单事件发生的可能性,进一步加深对可能性大小的认识。
2、使学生在学习用分数表示可能性大小的过程中,进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。
3、使学生在学习过程中乐意与他人交流自己的想法,并获得一些成功的体验。
[教学重点]
会用分数表示简单事件发生的可能性大小。
[教学难点]
理解并掌握用分数表示可能性大小的基本思考方法。
[教学过程]
一、谈话
你们知道我们国家的国球是什么吗?你知道哪些著名的乒乓球运动员?(电脑上显示著名乒乓球运动员的照片。)这些运动员通过努力为祖国争得了许多的荣誉,真了不起,我们要向他们学习。
大家都这么喜欢乒乓球这一运动,老师想考考大家对乒乓球比赛的规则是不是了解呢?(猜裁判把乒乓球放在左手还是右手,猜对的先发球;五局三胜;每球得分制;每局11分)
[教学设想:乒乓球是我们国家的国球,和学生交流相关的话题,往往可以激发学生的兴趣,学生乐于交流,这样一种良好的交流氛围也一定可以延伸到之后的教学活动中。在谈话的同时放一些相关的图片,学生在交流和欣赏的同时一定会产生自豪感的,同时进行了思想教育。]
二、新课教学
1、教学例1。
谈话:刚才我们讲到在乒乓球比赛中,通过猜裁判把乒乓球放在左手还是右手的方法来决定谁先发球。(出示场景图。)
你们认为这种用猜左右的方法决定由谁先发球的方法公平吗?(公平)你们有没有想过为什么这么做对双方运动员来讲都是公平的呢?能不能把你的'想法先和你同桌交流一下。
全班交流,形成共识:裁判员把1个乒乓球握在手里,不让任何人知道球在哪只手里,给参加比赛的运动员猜。由于乒乓球可能在裁判的左手,也可能在裁判的右手,所以,有可能猜对,也可能猜错。也就是说猜对或猜错的可能性是一样的、相等的。
老师也要做一回裁判,请两位学生也来猜一猜,验证一下我们刚才讨论的结果。
[教学设想:先让学生通过讨论,让他们有自己的一些理解,再通过实际演示让学生更加直观地明白在这种情况下,猜对或猜错的可能性是一样的、相等的,所以是公平的。]
可能性教案 篇5
【教材分析】
(一)教学内容分析:
可能性和概率是七年级下册第三章《事件的可能性》的第3节内容。这是在学生通过具体情境了解了必然事件、不确定事件、不可能事件等概念,并在具体情境中了解事件发生的可能性的意义,会用列举法(包括列表、画树状图)统计在简单问题情境中可能发生的事件的种数的基础上,对其中的可能性事件的进一步学习和提升。通过一些简单的事例,初步认识概率的意义,导出等可能性事件的概率公式,知道不可能事件的概率为0,必然事件的概率为1,不确定事件的概率大于0且小于1。这样的安排完全是按照《新课程标准》的分步到位,螺旋式上升的整体设计。
教材中通过以下步骤建立概率的意义:通过实例认识事件发生的可能性及其大小——用事件发生的可能性的大小定义概率——在等可能性的前提下用比的形式来表示概率。其中第3个步骤“等可能性”这个前提十分重要。课本通过说理的方法来让学生认识等可能性。有关概率的概念,本教科书将在八年级下册学习频数和频率的基础上,主要安排在九年级上册学习。因此在本章教学中尽量不随意提高要求,主要是为以后的进一步学习打下扎实的基础。同时也进一步使学生了解概率的产生与发展是与生产、生活紧密联系的。
(二)学情分析
考虑到七年级学生的认知水平和知识结构,遵循启发式原则,在新课标的指导下,本节课采取发现与探究结合的教学方法。充分体现教师组织、引导、合作的作用,凸现学生的主体作用,让学生充分经历实际问题的情景,这是认识事件发生的可能性及其大小的唯一途径。教学中应通过大量的实际例子,让学生知道什么是等可能性?怎样认识两个事件发生的可能性是否相等?计算等可能事件发生的概率对学生来说不太容易。 涉及一些简单事件的概率计算,主要目的是让学生初步认识概率的意义,以及在等可能性的条件下概率的一种直观表现形式。这是学生学习了事件的可能性后的一个自然延伸。在教学中,应注意所学内容与日常生活、自然、社会和科学技术领域的联系。让学生感受到学习等可能性事件的概率的重要性和必要性。还应注意使学生在具体情境中体会事件的可能性与概率的意义。这些不仅是学习本节的关键,对于学好本章及至以后各章也是很重要的。
【教学目标】
1、 了解概率的意义
2、 了解等可能性事件的概率公式
3、 会用列举法(包括列表、画树状图)计算简单事件发生的概率
进一步认识游戏规则的公平性
【教学重点、难点】
重点:概率的意义及其表示
难点:例2涉及转盘自由转动2次,事件发生的条件构成比较复杂,是本节教学的难点。
【教学过程】
(一) 创设情境,引入新知:
引例:小红与小李被同学们推选为班长,获票数相等,谁担任正班长哪?老师决定用抽签的办法来决定:做4个纸团,其中只有1个纸团里写有“正”字。由小红从中任取1个纸团。抽出有“正”字的纸团,就决定由小红担任正班长。这个办法公平吗?如果不公平,怎样改正才会使之公平?
分析:小红从4个纸团中抽出写有“正”字的纸团的可能性是 ,即小红担任正班长的`可能性是 。如果小红抽到写有“正”字的纸团,就决定由小红担任正班长,这个办法不公平。然后由学生共同合作讨论,得到改正的方法。而且,这改正的方法不止一种。要充分发挥学生的主观能动性和合作精神,让学生积极参与。
解答:这种抽签决定正班长的办法是不公平的,如果仅对小红而言是不公平的。如果小李也按这个办法实行,小李担任正班长的可能性也是 ,也就是说,双方获胜的可能性相同。这个办法才是公平的。(改正的方案不唯一)
(这样的引入,体现数学来源于生活,素材与学生现实紧密结合,从解决实际问题的欲望而促进对数学学习的兴趣,鼓励合作学习。从多角度思考,采用多种解决问题的办法,创造积极合作、讨论的氛围。)
(二) 师生互动,探索新知:
从此题解答中可以得到,在客观条件下使小红与小李抽签胜出的可能性大小相等(也称机会均等)那么才是公平的。而事实上,我们在日常生活中,常常会遇到指明可能性大小的情况:教师可举一些描述实际生活中有关可能性大小的几个例子:
①小明百分之百可以在一分钟内打字50个以上,即小明在一分钟内打字50个以上的可能性是100%。
②小华不可能在7秒内跑完100米,即小华在 秒内跑完100米的可能性是0。
③通过摇奖,要把一份奖品奖给10个人中的一个。每人得奖的可能性是 。
接着类似的可以让学生自己结合生活经验独立举一些例子。
(这样的安排是使学生有独立思考的空间并让学生充分发表自己的意见。只要合理、正确都予以高度肯定,激发学生的兴趣。但学生难免犯错,但相信同学之间也能纠错。教师放手让学生在互相讨论和互相评价中得以提高和加深对知识的理解。在学生评价中,集思广益,能体会到如何更完善和辨证地分析问题。)
然后教师归纳,在教学中我们把事件发生的可能性的大小也称为事件发生的概率,一般用 表示。事件 发生的概率也记为 ,事件 发生的概率记为 ,依此类推。
如果我们知道事件发生的可能性相同的各种结果的总数,并且知道其中事件 发生的可能的结果总数,那么就可用以下式子表示事件 发生的概率:
强调:概率的数学意义是一种比率,这个概率公式适用的条件——事件发生的各种可能结果的可能性都相等。这一点学生容易疏忽。可根据学生具体情况确定是否再举一些实例加以辨别各种可能结果的可能性是否都相等。
例如:任意抛掷一枚硬币,有“正面朝上”和“反面朝上”两种结果。由于硬币质地均匀,抛掷时具有任意性,所以出现“正面朝上”和“反面朝上”的可能性认为是相等的。适用等可能性事件的概率公式。而对于“投篮”,虽然也只有两种可能结果:“命中”与“没命中”,但由于投篮的命中率与投篮者的技术水平相关,“命中”与“没命中”的可能性通常是不相等的。
(三) 讲解例题,综合运用:
在弄清等可能性的含义后,就可以应用本节课的概率公式解决实际问题。
例1:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数是1的概率是多少?是偶数的概率是多少?是正数的概率是多少?是负数的概率是多少?
分析:由于一枚骰子有六个面。当骰子停止运动后,每一个面朝上的可能性都为 。即为等可能性事件。因此可用概率的公式计算。
解:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数有可能性相同的 种可能,即1、2、3、4、5、6。所以朝上一面的数是 只有 种可能,即朝上一面的数是 的概率 ;是偶数的有 种可能,即2、4、6。所以朝上一面的数是偶数的概率 ;是正数的有 种可能,即1、2、3、4、5、6。所以朝上一面的数是正数的概率 ;是负数的可能结果有 种,即所有可能的结果都不是负数,所以朝上一面的数是负数的概率 。
一般地,必然事件发生的概率为100%,即 。不可能事件发生的概率为0,即 。而不确定事件发生的概率介于0与1之间,即 。
(例1的目的主要巩固等可能性事件的概率公式,教师着重讲清解法的思路和方法步骤。解这类问题的基本思路是先分析判断是否适用等可能性事件的概率公式。然后统计所有可能的结果数和所求概率的事件所包含的结果数,再把它们代入公式求出所求概率。)
从例1中自然引出必然事件的概率为1,不可能事件的概率为0,不确定事件的概率为 。
(四) 练习反馈,巩固新知:
做一做:
1、 从你所在小组任意挑选一名同学参加诗朗诵活动,正好挑中你的可能性是多少?
(根据班级各小组的实际人数回答)
2、 转盘上涂有红、蓝、绿、黄四种颜色,
每种颜色的面积相同。自由转动一次转盘,
指针落在红色 区域的概率是多少?
指针落在红色或绿色 区域的概率是多少?
(1/4,1/2)
(五)变式练习,拓展应用:
例2:如图所示的是一个红、黄两色各占
一半的转盘,让转盘自由转动2次,指针2
次都落在红色 区域的概率是多少?一次落在
红色 区域,另一次落在黄色 区域的概率是多少?
分析:
(1)由于转盘上红、黄两色面积各占一半,转盘自由转动一次,指针落在黄色 区域和落在红色 区域的可能性是相同的。
(2)统计所有可能的结果数,让学生自己列表或画树状图。应注意转盘的两次自由转动意味着事件的发生分两个步骤,各种可能包括了顺序的因素。
(3)统计所求各个事件所包含的可能结果数。
解:根据如图的树状图,所
有可能性相同的结果数有4种:
黄,黄;黄,红;红,黄;红,红。
其中2次指针都落在红色 区域的可能结
果只有1种,所以2次都落在红色 区域
的概率 ;
一次落在红色 区域,另一次落在黄色 区域的可能有结果2种,所以一次落在红色 区域,另一次落在黄色 区域的概率 。
变式:在例2的条件下,再问:第一次落在红色 区域,第二次落在黄色 区域的概率是多少?讲解时注意让学生自己分析同例2的第二问的区别。从中求出变式的正确的解答为 。
(本环节主要让学生体验变式中的探究学习,培养学生的严谨的科学态度,提倡题后反思。)
(五) 反思总结,布置作业:
引导学生总结本节课的所学知识,反思有什么样的收获。进一步激发学生的学习热情,也让参与反思的学生更多。在交流的过程中学会学习,完善自己的知识体系。然后布置作业,有助于学生应用能力和创新能力的培养。
五、教学说明:
本章计算等可能性事件的概率只涉及简单的独立事件。一般每次取1个,最多取3次。教师应把握好教学要求。
可能性教案 篇6
教学内容:义务教育课程标准实验教科书三年级上册106页例3及“做一做”,练习二十的第4、6、10题。
教学目标:
1、知识目标:经历可能性的试验过程,知道事件发生的可能性是有大小的。
2、能力目标:培养学生通过实验获取数据、利用数据进行猜测与推理的能力;并能列出简单试验所有可能发生的结果。
3、情感目标:在活动交流中培养合作学习的意识和能力。
教学重点:学生通过试验、收集和分析试验数据知道事件发生的可能性是有大小的。
教学难点:利用可能性的知识解决实际问题。
教学准备:两个转盘、盒子、红球24个、蓝球6个、漂亮的卡通人物、硬币、多媒体课件,颜色笔。
教学过程:
一、创设情境,激趣猜测
1、听故事,激发学习兴趣
(1)老师知道同学们最喜欢听故事,特意准备了一个《小猴子下山》的故事,想听吗?
(动画播放:有一天,小猴子下山来。它看见玉米地里的玉米结得又大又多,就掰了一个扛着往前走。走着走着,来到桃树底下,看见满树的桃子又大又红,就扔了玉米去摘桃子。小猴子棒着几个桃子走到一个瓜地里,它看见满地的西瓜又大又圆,就扔了桃子去摘西瓜。它抱着一个大西瓜往回走,走着走着,看见一只小兔蹦蹦跳跳的多可爱,就扔了西瓜去追小兔。)
2、猜测:请同学们想一想,小猴去追小兔,结果会是怎样呢?
学生猜测:它有可能追到小兔,也有可能追不到小兔。
师:那追到的可能性会......很小。
3、有些同学认为小猴不可能捉到小兔,有些同学认为小猴还有可能捉到小兔,只是可能性很小,看来,事情的发生不仅有可能性,而且发生的可能性还有大、有小。今天这节课我们就继续来学习有关可能性的问题。
(板书课题:可能性的大小)
实践是最好的老师,下面我们就通过摸球试验来研究,好吗?
二、探究、验证
1、试验准备。
(1)介绍试验材料。
师:每个小组准备了一个盒子,盒子里都有红球和蓝球。
(2)说明试验要求。
(多媒体出示小组合作要求。)
师:请同学们根据屏幕上的要求进行摸球试验,摸球20次,根据摸球的情况完成好摸球情况统计表和统计图,然后观察统计图思考以下两个问题:(一)摸到哪种颜色球的可能性大?
(二)摸到哪种颜色球的可能性小?
(3)提出注意事项。
师:最后还请同学们特别注意:摸球时不能用眼晴看,摸球试验结束后不要打开盒子哟,能做到吗?下面请小组长拿出记录表和统计图,就可以开始试验了。
2、合作试验、初步推测。
(1)各小组试验,教师巡视。
(2)观察、汇报。
师:谁把你们组的试验结果汇报一下?
生汇报。
3、推理、验证、归纳。
(1)观察。
(集中展示各小组的摸球情况统计图。)
师:这是我们6个小组的摸球情况统计图,请同学们仔细观察,你发现什么呢?
生发现:每个小组都是摸出红球的可能性大,摸出蓝球的可能性小。
师:(疑惑地)咦!每个盒子里都有红球和蓝球,为什么每个小组都是摸出红球的可能性大,摸出蓝球的可能性小呢?
(2)思考。
师:这都是你们的推测,到底对不对呢?有什么方法可以知道?
师:好!莫老师数三声,我们就一起把盒子打开。
师:请同学们数一数,红球有几个?蓝球有几个?看了这些颜色球的数量,再联系刚才的试验结果,你知道了什么?
(红球的数量多,摸到的可能性大,蓝球的数量少,摸到的可能性小。)
师:也就说,在摸球试验中,可能性的大小和什么有关系呢?
(与球的数量有关。)
师:如果让你在自己小组的盒子里再摸一次,你觉得摸到什么颜色球的可能性大?为什么?好,请六个小组长一起来摸摸看。
(3)归纳。
师:同学们通过刚才的摸球试验发现了可能性的大小与不同颜色球的数量有关。哪种颜色球数量多,它的可能性就......(大);哪种颜色球数量少,它的可能性就......(小)。那可能性小是不是就代表没有可能摸到呢?
三、应用、拓展
师:其实生活中还有不少事情的出现与可能性的大少有关,你们能运用可能性知识来解决一些生活中的实际问题吗?
1、转转盘。(课本106页的“做一做”。)
师:看,这里有个大转盘,想来转转吗?莫老师手里有许多漂亮的图片,你来选一种颜色格,如果你真的转到那种颜色格的话,我就送你一个图片,谁想来试试?还有谁想来?
(生可能会选黄色)你为什么会选黄色格呢?
(因为黄色格的数量多,红色格的数量少,所以转到黄色的可能性大。)
转转试试看?
不行,每次都是你们赢,我得换个转盘,这次如果你还是转到黄色格的话,我就送你一张更漂亮的图案,谁来转?(指名3名学生上台转)
师:为什么只有()个同学拿到图案?
(因为黄色格的数量少,蓝色的数量多,转到黄色的可能性小。)真聪明!那就把这张图案送给你吧?
3、拓展。
师:老师这里还有一个有趣的转盘(出示幸运转盘)。
商场为了吸引顾客购物,经常让顾客参与购物转奖的游戏。他们为什么把一等奖的部分这样设计呀?
(因为一等奖的奖品很贵重,所以要让人们转到一等奖的可能性小,转到其它奖的可能性大。)
师:你们能用学到的数学知识解释生活中的问题,真是棒极了!
2、设计转盘。(练习二十第4题。)
师:看了这个转盘,你们想不想也来设计这样有趣的转盘?
(1)课件出示设计要求。
请同学们在书本109页上涂一涂。
(2)谁想上来展示一下自己的作品?(用实物投影仪投影学生作品)
问:在设计转盘时你是怎样想的呢?你们也是这样想的吗?
(3)。
师:在设计第一个转盘时我们只要使得红色格的数量比蓝色格多就行了,在设计第二个转盘时只要使得蓝色格的数量比红色格多就可以了,你们都设计出了符合要求的转盘了吗?
4、解决问题。
师:今天还有一位我们非常熟悉的朋友来到了我们的课堂,看谁来了?(课件出示小猫扑蝴蝶)
师:小精灵明明带着他的魔棒来了,还有谁来了?(小猫)
师:听,小精灵有问题要问了:天空中有7只黄蝴蝶,3只红蝴蝶,小猫随意扑一只,扑到哪种蝴蝶的可能性大呢?
(小猫扑到黄色蝴蝶的可能性大。)
师:那我们就来看看小猫是不是扑到黄色蝴蝶的`可能性大。(课件演示小猫扑到了一只黄色的蝴蝶。)
师:看来确实是扑到黄蝴蝶的可能大。现在天空中还有几只黄蝴蝶和几只红蝴蝶?小猫再随意扑一只,扑到哪种蝴蝶的可能性大呢?
(天空中还有6只黄蝴蝶3只红蝴蝶,小猫随意扑一只,还是扑到黄色蝴蝶的可能性大。)
师:我们一一看。(课件演示小猫扑到了一只红蝴蝶。)
师:(疑惑地)咦!不是说小猫扑到黄蝴蝶的可能性大吗?怎么会扑到一只红蝴蝶呀?
(因为天空中还有红蝴蝶,所以还是有可能扑到红蝴蝶的,只不过扑到红蝴蝶的可能性小一点。)
师:扑到红蝴蝶的可能性小并不是说不可能扑到红蝴蝶。
听!小猫又有问题想问了:你能想办法让我扑到红蝴蝶的可能性大吗?(增加红蝴蝶的只数,让它的只数比黄蝴蝶多。)
(师用课件演示:小精灵用它的魔棒增加了7只红蝴蝶。)
5、猜一猜。(练习二十第10题。)
师:下面我们来做个游戏怎么样?这里有四个盒子,其中只有一个盒子里面放着一个硬币,你来猜一猜,可能会在哪个盒子里?下面我们来统计一下,注意:每个同学只能选择一次;认为在一号盒子里的举手,认为在二号盒子的,三号盒子,四号盒子。
师:下面我们来揭晓,哦!原来在2号盒子里。也就说只有X个同学猜对了。现在请同学们想想,为什么猜对的人少,而猜错的人多呢?
汇报:因为硬币只能在四个盒子中的一个,有三个盒子中没有,所以猜错的人数多,猜错的可能性就大。
师补充:虽然猜对的可能性小,但我们也是有可能猜对的。
四、、延伸
1、延伸。
师:其实,关于可能性的问题,在很久以前就有不少的数学家做过研究,最典型的是掷硬币的试验。同学们看一看,这是一枚1元的硬币,将硬币掷出,结果会怎样?掷到哪一面的可能性大呢?今天的作业是回家后,请你和爸爸、妈妈一起来做一做这个掷硬币的小试验,自定试验次数,老师建议次数多一点,这样试验结果才准确;并将硬币正、反面朝上的情况做好统计,明天把你的试验结果记录表拿回来全班一起交流好吗?
2、。
(1)今天这节课你学会了什么?最高兴的是什么?对自己的学习满意吗?你觉得老师表现得怎样?
(3)师:刚才《小猴子下山》的故事还没讲完,想听完吗?
出示录音:小兔子看到小猴追上来,马上串进草丛里不见了,这时太阳快下山了,小猴只好空着手回家去了。
师:看了这个故事结果后,你们有话要跟小猴子说吗?
小朋友们,我们可不要像小猴那样三心两意哦!
五、板书设计
可能性大小
数量多可能性大
数量少可能性小
可能性教案 篇7
教学目标:
1.通过游戏、竞赛等形式,让学生经历猜测、试验、交流,体验事件发生有些是确定的,有些是不确定的。
2.列出简单事件所有可能发生的结果。
3.学会用“一定”、“可能”、“不可能”的词语来描述生活中一些事件发生的可能性。
4.初步培养学生科学的思考方法。
教学重点:使学生知道事件发生的可能性的大小是不同的。
教学难点:培养学生简单的逻辑推理和表达自己的思考过程的能力。
教学准备:
教师准备:课件,小布袋,白、黄两种颜色的球,彩球。
学生准备:彩笔或蜡笔。
教学过程:
一、 游戏导入
掷硬币游戏:投影仪显示
1. 出示一元钱硬币,告知学生正面与反面.
2. 游戏规则,猜一猜可能是哪面朝上。(正面,反面)意见不一样,是为什么?
3. 观看几次掷的结果,发现硬币有正面朝上,也有反面朝上。
总结:掷一枚硬币,结果可能正面朝上,也可能反面朝上,这就是一种可能性
(板书:可能性)
二、摸球游戏,感受“可能”“一定”“不可能”
(一)感受“可能”
在1号箱子里放入3个黄球,3个白球
1.猜一猜,可能摸到什么球,并说说原因。
2.摸一摸(摸之前都要先摇匀)
3.总结:可能摸到白球,也可能摸到黄球。(板书:可能)
(二)摸奖比赛,感受“一定”“不可能”。
师:这种摸球游戏你们会玩了吗?下面我们进行一个小组摸球比赛,每一个组都有一个口袋,每人只摸一个!老师在里面装了一些球,谁先摸到白球谁就有奖,开始。
师:有谁摸到白球了吗?(没有)
师:任何一名同学都不可能摸到白球,猜一猜这是为什么?
生:袋子里没有白球,都是篮球。
师:倒出来看看是不是这样。
师:袋子里全是篮球。如果继续让你们摸,会出现什么情况?
生:摸出的一定是篮球(板书:一定)确定吗?
摸出的不可能是白球(板书:不可能)确定吗?
总结:掷硬币,可能出现正面,也可能出现反面。在装着篮球的袋子里,不可能摸到白球,一定摸到篮球。在我们生活中,也有这样一些确定与不确定的现象。现在要请同学们当一个聪明的小法官,来判断一下了,愿意吗?记住,你认为可能的用手势“○”表示;不可能的用“×”表示;一定的用“√”表示。
三 联系实例——解决问题
小组讨论“一定”、“可能”、“不可能”判断
师:在我们的生活中,可能性的问题还有很多,大家会判断吗?现在请同学们自己来判断一下,跟小组内的成员商量商量,记住把理由想清楚.
①地球每天都在转动。
②我从出生到现在没吃过一点而东西。
③三天后下雨。
④太阳从西边升起。
⑤吃饭时,人用左手拿筷子。
⑥世界上每天都有人出生
有不同意见,让学生说说怎么想的。
总结:同学们表现真不错,都会用数学的`眼睛来看生活中的事物了。知道有些现象是确定的,如地球转动;有些现象是不确定的,如天气。
四、联系生活,拓展应用
1.完成课后练习
2.用“可能”、“一定”、“不可能”填空。
3.说说生活中“一定”、“可能”、“不可能”的例子
师:你还能举出生活中其他“一定”、“可能”“不可能”的例子吗?小组里说一说,一会来交流一下。
同意的给予掌声,认为不对的说说为什么。
五、看书质疑,巩固提升。
1. 改变条件,“一定”、“可能”、“不可能”可以相互转化
阿凡提是一个特别聪明的人。有一次呢,一个黑衣人带着一袋金币来刁难阿凡提:如果你能把这袋金币抛向空中,落到地面时全都是正面朝上,那么这袋金币就归你了。否则,你就得赔我一袋金币。
师:你们觉得阿凡提可能得到这袋金币吗?
2. 从前有一个忠臣被奸人陷害,被皇帝。但按照当时法律的规定,要抽生死签。抽到生签就能免一死,抽到死签就马上处死。这时候这个大臣面对几种情况?一个奸臣为了置他于死地,向皇帝进谗言,偷偷地把两张签都换成了死签,这时候大臣还有可能活下来吗?一个士兵偶然知道这件事,很伤心地悄悄告诉了大臣,不料大臣知道后,反倒很高兴,抽完签后竟然没被处死,你们知道他是怎么做的吗?
六、紧扣课题,互动结束
师:好了,同学们,这节课就快要结束了,你们该跟老师说什么?听要求和我再见:跟老师们招手再见的一定是女生,跟老师们招手再见的一定是男生,跟老师们招手再见的不可能是女生,跟老师们招手再见的可能是女生也可能是男生。跟我再见的一定是三(2)班的同学。好,再见!
可能性教案 篇8
教学内容
义务教育课程标准实验教科书《数学》三年级上册104页例1、例2及相关练习
设计理念
根据新课程标准和教材的要求,我利用多媒体教学以及让学生通过小组讨论、独立解决问题以及动手操作等形式让学生感受什么事件是可能发生的,什么事件是不可能发生的,什么事件是一定发生的,达到本课的教学目的。
教学目标
1、通过猜测和简单试验,让学生初步体验事件发生的确定性和不确定性,初步能用“一定”、“可能”、“不可能”等词语来描述生活中一些事情发生的可能性。
2、培养学生的猜想意识、口语表达能力及合作学习的能力。
3、培养学生初步的判断和推理能力。
4、让学生在活动过程中懂得数学存在于现实生活中,从而使学生产生积极的情感体验;激发学生学习数学的兴趣及培养良好的合作学习态度。
教学重点
1、通过猜测和简单试验,初步体验事件发生的确定性和不确定性。
2、培养学生的猜想意识、口语表达能力及合作学习能力。
教学难点
正确用“一定”、“可能”、“不可能”等词语描述事件发生的可能性。
教具、学具准备
教学光盘;每组准备A盒(里面放有6个蓝色的玻璃珠)、B盒(里面放有红、黄、绿色玻璃珠各2个)各1个;每组2个信封(内装有题卡);玻璃珠。
教学过程
一、游戏激趣,导入新课
小朋友们,你们喜欢玩游戏吗?这节课老师和一们一起玩好吗?
1、游戏活动一:“猜一猜”
师:小朋友们,今天老师想跟你们玩的第一个游戏是“猜一猜”。老师这里有一颗漂亮的玻璃珠(举起双拳),它就在我其中的.一个拳头里,你们猜猜它会在哪只手里?
生答……
师:看来大家的意见不一样,老师帮帮你们吧!(教师慢慢张开空着的手,再次握紧拳头)
生再次回答。
师挥动拿球的一只手问:为什么你们这次那么肯定玻璃球就在这只手里呢?(指名回答)
师:在日常生活中,有些事情我们不能肯定它发生的结果,有些事情可以肯定它发生的结果,类似的例子还有很多,大家有兴趣研究吗?这节课我们一起来研究事情发生的可能性。(板书课题:可能性)看看哪个小组研究得最好,将得到一颗“集体智慧星”。
二、合作学习、探究新知
(一)游戏活动二:石头剪子布
师:小朋友们,你们会玩“石头剪子布”的游戏吗?老师跟你们一起玩好吗?(开始游戏)游戏结束后,教师问:谁赢了老师?谁输给了老师?(让学生举手表示赢和输)接着问:还有些同学没有举手,为什么?(指名回答)
师:有输、有赢、还有平的。那么,我们再来玩一次好吗?(让几个学生回答游戏结果)
师:你在开始游戏时想赢老师吗?结果呢?为什么想赢又赢不了?(指名回答)如果咱们再玩一次,猜一猜,结果会怎样?(引导学生说出可能输、可能赢、可能平并板书:可能)
可能性教案 篇9
教学内容:
人教课标版教材三年级上册第八单元(P110—111)
教学目标:
1、通过练习让学生进一步感受可能性,知道事件发生的可能性是有大有小的。
2、通过实际操作活动,培养学生的动手实践能力,合作交流能力。
3、巩固本单元知识。
教学过程:
一、情境引入,回顾再现
师:同学们,通过前面的学习我们知道有些事情的发生是确定的,有些则是不确定的。哪位同学愿意用“一定”、“可能”、“不可能”等词语来描述生活中一些事情发生的可能性呢?(指2—3名同学举例,其他同学评判,教师适时点评。)
师:我们还知道事件发生的可能性有大有小。下面就请同学们猜一下三、一班的张晨同学做哪个游戏的可能性比较大?(大屏幕出示:大课间活动,三、一班的40名同学在操场上做游戏,有30人在丢手绢,6人在跳绳,4人在踢毽子。张晨是三、一班的学生,她做哪个游戏的可能性大?为什么?)
生1:张晨做丢手绢游戏的可能性大,因为……。
生2:……
生3:……
师:这节课我们就来针对这些内容进行相关练习。(引出并板书课题:可能性的练习。)
(设计意图:让学生通过对“一定”“可能”“不可能”等现象的描述和事件发生可能性大小的解答,回忆再现新授课中有关的知识和方法。)
二、分层练习,强化提高
师:首先,看一看同学们能不能做一名合格的小法官。(出示)
1、基本练习
(1)我是小法官。(快速抢答,看谁说的又对又快。)
①一周有七天。()
②人的一生中一定要吃饭。()
③小明长大后一定能当飞行员。()
④下周一一定是阴天。()
(2)从放5个红球和1个绿球的口袋中随意摸出一个球,摸出什么球的可能性更大些?(指生回答,重点说原因。)
师:刚才同学们的表现真棒!下面我们来做个游戏好吗?
2、综合练习
(1)课本110页第8题。
师:掷骰子游戏喜欢吗?请同学们拿出写有1—6这几个数字的骰子来,我们一起玩。
①让生说一说掷出后可能出现的结果有哪些?
②猜测试验后的结果会有什么特点?
③实践、记录、统计。(全班一起掷一次,师参与记录各个面出现的次数。)
④说说从统计数据中发现了什么?
⑤由于实验结果与理论概率存在差异,如果得不到预期结果,可以再让学生多掷次,增加实验总次数,尽量使实验结果接近理论概率。
(设计意图:让学生亲自动手实践,使学生进一步感受事件发生的等可能性。)
(2)课本110页第9题。(出示主题图)
师:过元旦的时候,
三、一班用抽签的形式来决定每位同学所要表演的节目。其中讲故事5张,唱歌3张,跳舞1张。如果你是其中的'一员,你最有可能表演什么节目?
生:我最有可能表演讲故事。
师:为什么?
生:因为讲故事的签比较多。
师:谁能用“最有可能”和“最不可能”说一说其它两个事件发生的可能性?
生:我觉得最有
可能抽到唱歌,最不可能抽到跳舞。
(3)课本111页第10题。
师:我这里有4个盒子,其中一个盒子里放有硬币,猜一猜可能在哪个盒子里?(注意:每个同学只能选择一次,不能重复选。)
①生猜。
②简单统计猜测情况。
③揭示结果。
④说一说为什么猜错的比猜对得多。(引导学生发现:硬币只能在4个盒子中的1个,有3个盒子中没有,所以猜错的人数比较多猜错的可能性大。)
师:同学们真聪明!考虑问题真全面。接下来老师提高一下难度,有没有信心做好?
3、提高练习
(1)课本111页第11题。
师:请同学们拿出自制的正方体来,在它的6个面上涂上红、蓝两种颜色,要使掷出的红色的可能性比蓝色大,应该怎样凃?
①生动手涂色。
②小组展示交流,说想法。
③集体展示交流凃法。(只要涂色后正方体的红面比蓝面多就行。)
(2)课本111页第12题。(出示)
①生独立思考应怎样填。
②小组合作完成。
③集体展示交流。(只要写有数字“1”的卡片数量最多,写有数字“5”的卡片数量最少就行。)
(设计意图:让学生通过动手、动脑,合作交流,汇报展示,使学生积极的参与到数学学习活动中,进一步体会事件发生的可能性是有大有小的。)
三、自主检测,评价完善
(一)自主检测
师;刚才同学们用所学的知识,解决了这么多的数学问题,真了不起。老师还为同学们准备了一组测试题,请同学们赶快大显身手吧!(让生做在测试纸上)
1、选择题。
①有一个盒子,里面装着4个白球和5个黄球,任意从盒子中取出一个,( )的可能性较大。
A、白球 B、蓝球 C、黄球
②把一些白色围棋子放在书包里,从中任意摸出一个,( )是白棋子。
A、可能 B、一定 C、不可能
③从8个红色的的玻璃球和2个黄色的玻璃球中任意摸出一个,找到( )色的玻璃球可能性更大些。
A、红色 B、蓝色 C 黄色
④从1个蓝色的玻璃球和10个白色的玻璃球中任意摸出一个,摸到( )玻璃球可能性更小一些。
A、白色 B、蓝色 C、红色
⑤把3个白球和5个红球放在盒子里,任意摸出一个,( )是蓝色的。
A、可能 B、一定 C、不可能
2、按要求凃一涂
(1)摸出的一定是
(2)摸出的不可能是
(3)摸出的可能是
(二)、评价完善。
生汇报答案,其余自我核对,纠正错误。
(设计意图:通过自主检测,进一步强化“双基”,找出存在的问题,订正错误,并体验学习成功的喜悦。)
四、归纳小结,课外延伸
1、归纳小结
师:这节课主要练习了什么内容?你最大的收获是什么?你觉得你表现的怎样?
可能性教案 篇10
教学目标:
1.使学生结合具体的实例,初步感受简单的随机现象,能列举出简单随机事件中所有可能出现的结果,能正确判断简单随机事件发生的可能性的大小。
2.使学生在观察、操作和交流等具体活动中,初步感受简单随机现象在日常生活中的广泛应用,能应用有关可能性的知识解决一些简单的实际问题或解释一些简单的生活现象,形成初步的随机意识。
3.使学生在参与学习活动的过程中,获得学习成功的体验,感受与他人合作交流的乐趣,培养对数学学习的兴趣。
课时安排:
教学本单元用2课时
第1课时
重点难点:
感受简单随机现象的特点,能列举出简单随机现象中所有可能发生的结果,能对简单随机现象发生的可能性大小作出定性描述。
教学准备:
师:红、黄、绿球各2个、扑克牌、投影仪等;生:红桃A—4、黑桃4扑克牌
教学过程:
一、揭题
谈话:同学们喜欢玩游戏吗?今天这节课我们主要通过玩一些游戏,来研究游戏中隐藏着的数学知识。(揭示课题)
二、探究
1.教学例1。
谈话:先请看,这是一个不透明的空口袋,这里还有2个球,1个是红球,1个是黄球。把这2个球放入口袋里,想一想,如果从口袋里任意摸出1个球,你认为摸出的`会是哪个球?相机板书:可能谈话:可能是红球,也可能是黄球,到底能摸到哪个球并不确定(板书:不确定)。情况是不是这样呢?我们可以通过摸球游戏来检验,先看老师怎样摸球,(示范)像这样每次在摸球前先用手在口袋里把2个球搅一搅,再任意摸出1个球,看一看是什么颜色,并把摸出的结果记录在这张表里,然后把球放回口袋里,搅一搅,再摸。会做这样的游戏了吗?请小组长拿出课前准备好的口袋,在口袋里放1个红球和1个黄球。小组合作,轮流摸球,摸10次,并按顺序记录每次摸出球的颜色。
学生按要求活动,教师巡视。反馈摸球结果:请各小组选派一名代表到投影仪前展示你们组摸球的结果,并说说摸出红球和黄球各多少次。展示后,把各小组的记录单对应着排列起来。
讨论:比较各小组的摸球结果,你能发现什么?学生讨论,明确:各小组摸出红球、黄球次数不完全相同;每次摸出的球的颜色也不完全相同;但每个小组既摸出了红球,也摸出了黄球。提问:通过摸球游戏,你有什么体会?
2.教学“试一试”。
出示口袋,并在口袋里放2个红球。提问:现在口袋里有几个球?是什么颜色的?如果从这个口袋里任意摸出1个球,结果会怎样?(板书:一定)提问:如果口袋里只放了2个黄球,从中任意摸出1个球,可能摸出红球吗?为什么?(板书:不可能)追问:如果口袋里放1个黄球和一个绿球,从中任意摸出1个球,能摸出红球吗?比较:请同学们回顾一下例1和“试一试”的学习过程,想一想,同样在口袋里摸球,例1和“试一试”有什么不同?
3.小结
像这样,有些事件的发生与否是确定的,要么一定发生,要么不可能发生,这样的事件又称为确定事件;有些事件的发生与否是不确定的,可能发生,也可能不发生,这样的事件又称为不确定事件。(板书:确定性不确定性)4.教学例2。
谈话:通过摸球游戏,我们知道了有些事件的发生是确定的,有些事件的发生是不确定的。接下来,我们来玩摸牌游戏。(出示例2中的4张扑克牌)如果把这4张牌打乱后反扣在桌上,从中任意摸出1这,可能摸出哪一张?摸之前能确定吗?提问:可能出现的结果一共有多少种?把“红桃4”换成“黑桃4”,提问:现在的4张牌中,既有红桃,又有黑桃。如果从这4张牌中任意摸出1张,可能出现的结果一共有多少种?学生在小组里讨论,交流。
验证,各小组合作进行摸牌游戏。一共摸40次。
展示摸牌结果。比较发现。
【可能性教案】相关文章:
《可能性》教案03-11
可能性教案01-31
可能性教案06-18
关于可能性教案11-25
可能性教案15篇01-31
关于可能性教案范文9篇04-09
可能性教案集锦九篇04-12
可能性教案模板集合10篇04-13
可能性教案合集七篇04-11