分数乘法教案

时间:2023-02-14 09:03:13 教案 我要投稿

分数乘法教案精选15篇

  作为一名无私奉献的老师,时常会需要准备好教案,教案是教学蓝图,可以有效提高教学效率。那么应当如何写教案呢?下面是小编帮大家整理的分数乘法教案,欢迎大家分享。

分数乘法教案精选15篇

分数乘法教案1

  教学内容:

  教材第8页例6、例7,做一做1~2,练习一5~11。

  教学目标:

  1、懂得分数混合运算的顺序和整数混合运算的顺序相同,能熟练进行有关分数混合运算的计算。

  2、知道整数乘法的运算定律对于分数乘法同样适用,并能够运用所学运算定律进行一些简便运算。

  3、在观察、迁移、尝试学习、交流反馈等活动中,培养学生的'推理能力及思维的灵活性。

  教学重点:

  会计算分数混合运算,能利用乘法的运算定律进行简便运算。

  教学难点:

  根据题目特点,灵活地运用定律进行简便计算。

  教学过程:

  一、复习导入。

  1、提问:整数混全运算顺序是怎么样的?

  预设:先算乘、除法,再算加、减法。

  2、追问:遇到有括号的题该怎么来计算?

  预设:有括号的要先算小括号里面的,再算中括号里面的。

  3、计算题并提出要求:观察下面各题,先说说运算顺序,再进行计算。

  1/23+2/5

  68-54

  1/2(3/6-1/4)

  二、探索新知

  1、向学生说明:分数混合运算的运算顺序和整数混合运算的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。

  1/33/5+1 1-5/721/25学生独立完成,小组内订正。

  2、分数混合运算

  出示例题6:一个画框,长 米,宽 米,做这个画框要多长的木条?

  3、学生读题,理解题意。已知长方形画框的长是45m,宽是12m,求做这个画框所需要的木条的长度,就是求这个长方形画框的周长。

  4、学生独立列式或启发自学,交流收获。

  教师启发:两个算式都是分数混合运算,那分数混合运算的运算顺序是怎样的呢?

  (1)请学生自学教材第9页的内容。

  (2)指名交流汇报。引导学生发现:分数混合运算的顺序和整数混合运算的顺序相同。

  5、学生独立完成计算过程,交流汇报。交流时,指名说说整数混合运算的顺序是什么?

分数乘法教案2

  教学目标:

  1、知识目标:继续学习整数乘以分数的计算方法,让学生能够计算整数的几分之几是多少,学生能够熟练准确的计算出一个整数乘以不同分数的结果。

  2、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  教学重难点:

  学生能够熟练的计算出整数乘以不同分数的结果。

  教学方法:

  师生共同归纳和推理。

  教学准备:

  教学参考书、教科书

  教学过程:

  一、复习导入

  教师出示教学板书,请学生计算下列分数加减运算题。

  1/4×34×1/412×1/4

  教师:来回巡视学生的做题情况,并提问学生说说每一道算式的意义。

  学生寻找完毕,纷纷举手准备回答问题。

  教师提问学生回答问题,并注意更正学生的`错误和表扬回答问题的同学。

  二、课堂练习

  学生做第1题,教师注意让学生对比好门和小明的高度,并注意进行长度单位的换算。

  学生做第2题,教师注意提醒学生及时约分化成最简分数。并同桌之间相互说说每个算式的数学意义。

  学生做第3题,教师巡视学生做题情况,并及时对有困难得学生进行帮助。

  学生做第4题,教师注意让学生能够区分最少和最多这个数字范围,并提问学生说说自己的答案。

  三、课堂小结

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  480×3/81≤80(千克)180×5/6=150(千克)

分数乘法教案3

  教学目标

  1.使学生掌握分析分数应用题的方法,会分析关系句,找准单位1。

  2.使学生弄清题中的数量关系,掌握解题思路,正确列式解答。

  3.培养学生分析、解决问题的能力,以及知识迁移的能力。

  4.培养学生良好的审题习惯。

  教学重点和难点

  1.会分析数量关系,掌握解题思路,正确解答。

  2.找准单位1;根据问题需要的条件,把间接条件转化为直接条件。

  教学过程

  导语:前边我们已经学过了简单的分数应用题,今天继续学习分数应用题。(板书课题:分数乘法应用题)

  (一)复习铺垫

  1.说图意填空。(投影)

  问:谁是单位1?

  2.说图意回答问题。(投影)

  问:①谁和谁比,谁是单位1?

  3.准备题:

  (做在练习本上,画图列式计算,一个学生到黑板板演。)

  教师订正讲评。

  提问:①谁是单位1?

  ③要求用去多少吨就是求什么?

  少。)

  ④根据什么用乘法计算?

  (根据分数乘法的意义,求一个数的几分之几是多少用乘法计算。)

  师:如果把问改成还剩多少吨应该怎样计算呢?这就是今天要研究的稍复杂的分数应用题。(在课题板书前加上稍复杂的。)

  (二)学习新课

  1.学习例4。

  (1)读题找出条件和问题,并问:问题变了,现在?应画在哪?(在线段图中把?号移动。)

  (2)分析数量关系。(同桌互相说。)

  提问:单位1变了吗?单位1是谁?

  请同学们认真观察线段图,再根据刚才复习的有关知识讨论这道题如何解答,试着做一做。

  学生汇报结果,让学生说解题思路,老师一边把图补充完整。

  =2500-1500

  =1000(吨)

  答:还剩1000吨。

  生:把原有煤的总数看作单位1,先求出用去多少吨,就可以求出还剩多少吨。

  师追问:求用去多少吨你是怎么想的?

  答:还剩1000吨。

  生:把原有煤的总数看作单位1,欲求剩下多少吨,就要先求

  (3)引导学生比较:这两种解法在思路上有什么相同点和不同点?

  相同点:两种解法都是经过两步计算。

  不同点:第一种解法是先求出用去了多少吨,再用总吨数减去用去的吨数,得到的就是剩下多少吨。

  第二种解法是先求出剩下的占总吨数的几分之几,再求剩下的是多少吨。

  (4)练习做一做(1):

  昆虫标本有多少件?

  (做完让学生说解题思路、投影订正。)

  2.学习例5。

  六月份捕鱼多少吨?

  (1)读题找出条件、问题。

  (2)师生合作画出线段图,并分析数量关系。(让学生说画图过程)

  问:①谁和谁比,谁是单位1?

  (3)列式解答。

  师:请同学们认真观察线段图,分析数量关系。小组讨论如何解答,并考虑可用几种方法解答。

  学生汇报结果。(老师板书列式)

  答:六月份捕鱼3000吨。

  师追问:你是怎么想的?

  生:要想求六月份捕鱼多少吨,就得先求出六月份比五月份多捕鱼多少吨。

  师再追问:怎样求六月份比五月份多捕的吨数?

  捕的吨数。

  答:六月份捕鱼3000吨。

  师追问:怎么想的?

  生:把五月份的'吨数看作单位1,先求出六月份捕的相当于五月份捕的几分之几,就可以求出六月份捕鱼多少吨。

  师问:这两种解法有什么联系和区别?

  (联系:两种解法都利用了分数乘法的意义求已知数的几分之几。区别:解题思路不同。)

  (4)练习做一做(2)。

  答。

  (三)巩固练习

  1.补充问题并列式解答。(复合投影片)

  ________?

  2.选择正确答案的序号填在( )里。

  包?列式是

  [ ]

  [ ]

  A.乙队修了多少米?

  B.乙队比甲队多修多少米?

  C.甲队比乙队多修多少米?

  D.乙队比甲队少修多少米?

  (3)根据条件和问题列出算式。

  已知一袋大米重40千克。

  (四)课堂总结

  今天我们学习了较复杂的分数应用题,复杂在哪?解题的关键是什么?

  (复杂在问题所需要的条件没有直接给出,解题关键必须先把这个条件求出来。)

  课堂教学设计说明

  (1)在简单分数应用题的基础上进行本节课教学,学生已有了一定基础,因此首先设计三道复习题,为学生学习新知识做好辅垫。尤其从准备题过渡到例4,给学生搭了从旧知识迁移到新知识的桥梁,学生容易接受。同时使学生悟出新知识是在原有知识基础上发展起来的规律。

  (2)老师围绕重点难点精心设计提问,并充分利用线段图引导学生分析题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过两次对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。

  (3)因为学生有了学习简单分数应用题的基础,因此老师大胆放手,让学生同桌或小组讨论、分析、试做,做完后让学生自己说解题思路。学生充分参与了课堂教学过程,成为学习的主人,调动了积极性。同时培养了学生的口头表达、分析和与人合作的能力。

分数乘法教案4

  教材分析

  本单元是在学生掌握了整数乘法,分数的意义和基本性质,以及分数加减法以及约分等知识的基础上进行教学的。本单元所学内容属于分数中的基本知识和技能,这些知识不仅可以解决有关的实际问题,而且也是后面学习分数除法、比、分数四则混合运算以及百分数的重要基础。所以在教学这部分内容时,应切实让学生理解一个数和分数相乘的意义,掌握一个数和分数相乘的计算方法,并能解决求一个数的几分之几是多少的实际问题,为后续学习打好基础。

  学情分析

  六年级共有24名学生,部分学生还没有养成良好的学习习惯,计算能力也还有待加强;大多数学生对新鲜事物比较敏感,喜欢动手操作,但思想不易长时间集中;有30%的同学基础相对薄弱,对数学学习的兴趣不高。

  教学目标

  1、使学生能理解分数乘整数的意义,经历探索分数乘整数的计算方法的过程。

  2、能根据分数乘整数的意义推导分数乘整数的计算法则,并能正确地进行计算。

  3、培养学生独立运用知识解决问题的能力,体验成功的'快乐和学数学的价值。培养学生的迁移类推能力和自主探索的精神。

  教学重点和难点

  教学重点:让学生体验分数乘分数、分数乘整数的简便计算方法(先约分后相乘)。

  教学难点:分数乘分数或分数乘整数先约分再相乘的书写格式。

分数乘法教案5

  (高效课堂模式教案定稿)

  教案说明:本教案严格按照高效课堂模式进行编写,同时注重了培

  优辅差及学困生的转化,注重学生的全面发展,教案环节齐全、内容详细,可以A4纸直接打印。

  学科:;

  任课班级:;

  任课教师:;

  年月日

  个人说明:本教案还有许多不足之处,望广大网友谨慎下载。

  第一单元小手艺展示

  ——分数乘法

  一、教材分析

  本单元是在学生掌握了整数乘法,分数的意义和性质、分数加减法以及约分等知识的上进行学习的,是学习分数、比、分数四则混合运算及百分数的重要基础。本单元的主要学习内容有:整数和分数相乘,分数和分数相乘,分数连乘,“求一个数的几分之几是多少”的问题,倒数的'意义和求一个数的倒数。

  二、单元教学目标

  1.在解决具体问题的过程中,理解分数乘法的意义;掌握分数乘法的计算方法,能正确的进行计算;会解决“求一个数的几分之几是多少”的实际问题;理解倒数的意义;掌握求一个数倒数的方法。

  2.经历分数乘法计算方法的探索过程,体会数形结合思想在解决数学问题中的作用,培养初步分析、比较和推理的能力。

  3.在解决问题的过程中,感受分数乘法在现实中的应用,培养应用知识和兴趣。

  三、单元教学重点、难点

  重点:理解一个数和分数相乘的意义及“求一个数的几分之几是多少”用乘法计算。

  难点:理解分数乘分数计算的算理。

  四、课时安排:10课时

分数乘法教案6

  教学内容:

  练习一

  教学目标:

  1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  2、知识目标:复习分数乘以整数和分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以整数和一个分数乘以另一个分数的结果。

  3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  重点难点:

  学生能够熟练的计算出分数乘以分数和分数乘以整数的结果。

  教学方法:

  师生共同归纳和推理

  教学准备:

  教学参考书、教科书

  教学过程:

  一、复习导入

  教师出示教学板书,请学生计算下列分数乘法运算题。

  教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?这些分数乘法运算有什么不同?

  学生寻找完毕,纷纷举手准备回答问题。

  教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。分数乘以整数,整数乘以分子,分母不变。)

  二、课堂练习

  学生做第8题,让学生明白商场打折的意思,分别求出一个整数的几分之几是多少?如: =?

  学生做第9题,注意让学生用分数乘以整数的知识求出梨、苹果、香蕉各占水果总数的多少?

  学生做第10题,让学生计算一个分数的`几分之几是多少?注意提醒学生及时约分。

  学生做第11题,让学生先计算出分数乘法算式的得数再学会比较分数的大小。

  学生做第12题,教师注意让学生观察统计图表,求出20xx年比20xx年增加多少元?

  学生做第13题,让学生用整数乘以分数的知识来解决生活中有关分数的生活问题,注意提醒学生认清长度单位。

  学生做第14题,教师注意让学生利用分数乘法学会解决生活中实际问题。

  三、课堂小结

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  练习二

  15 10(米) 15-10=5(米)

分数乘法教案7

  教学内容:

  教科书第7—9页《分数乘法(三)》

  教学目标:

  1、结合具体情境,,探索并理解分数乘分数的意义;探索并掌握分数乘分数的计算方法,并能正确计算;

  2、培养学生动手操作,观察发现的能力。

  3、能解决简单的分数与分数相乘的实际问题,

  4、体会数学与生活的密切联系,培养学生学习数学的兴趣。

  教学重点

  1、结合具体情境,,探索并理解分数乘分数的意义;

  2、在操作活动中,借助图形语言,理解分数乘分数的意义

  教学准备

  1、每人准备一条约10厘米长的纸条;

  2、每人准备5张长方形的纸。

  教学过程

  一、 复习

  5×3/7 20×7/10 7/8×4 15×3/5

  (1)你是怎么算的?

  (2)表示什么?

  这就是我们前几天研究的分数乘整数的意义和计算方法,今天我们继续来研究分数乘法(三)。

  二、探究新知

  (一)探究分数乘法的意义

  1、《庄子天下》

  我国文化源远流长,《庄子天下》中有这样一句话,找同学读一下我国古代著名哲学著作《庄子·天下》中有这样一段话:“一尺之捶,日取其半,万世不竭。”意思是说:“一尺长的木棍,每天截一半,永远也截不完。”

  一尺之捶是指有限的长度,而万世不竭是指无限的时间。这是一个辩证

  的思想。我们可以把他变成数学问题,来理解这个问题。

  2、一张长方形纸条,第一次剪去它的 1/2 ,第二次剪去剩余部分的1/2 。此时,剩下的部分占这张纸条的几分之几?如果第三次再剪去剩余部分的1/2 ,那么剩下的部分占这张纸条的几分之几?

  (1)读题(你明白了吗?明白了)

  (2)拿出准备好的纸条,按照要求,动手中折一折、涂一涂,看看“剩下的部分占这张纸条的几分之几?”

  (3)小组交流

  (4)全班汇报(学生边展示边汇报)

  生:把这条纸平均分成两份,第一次剪去他的1/2还剩1/2,第二次剪去剩余部分的1/2,就是求1/2的1/2是多少,(1/4)。剪去剩余部分的1/2就是求剩余部分的1/2,就是1/4的1/2是多少。

  生:我第一次剪把一张纸平均分成了2份,剪去他的1/2,还剩多少 ?(1/2)

  第二次剪剩余部分的1/2,(剩余部分是多少呢?)1/2。是将1/2剪去他的1/2。(点:也就是在1/2的'基础上剪了1/2)。是这么大。(点:①是多少呢?打开看看(1/4)。②是1/4,打开给大家看看)

  第三次剪去剩余部分的1/2,(剩余部分是多少?1/4)在1/4的基础上剪了1/2,是多少呢?

  你能把他刚才讲的过程再说一遍吗?

  也就是说第二次剪了1/2的1/2,第三次剪了1/4的1/2

  (5)第二次剪了1/2的1/2,你能列出算式吗?(1/2×1/2=1/4) 1/2×1/2表示什么?(1/2的1/2是多少)

  第三次剪了1/4的1/2,你还能列出算式吗?(1/4×1/2=1/8) 1/4×1/2表示什么?(1/4的1/2是多少)

  看来大家是明白了,

  (求剩下的部分占这张纸条的几分之几就是求1/2的1/2是多少,与上节课

  学习的求一个数的几分之几的意义相同,所以用乘法计算。)

  (二)探究分数乘法的计算方法

  1、我们学过整数乘以分数的计算方法,看这个算式3/4×1/4-=表示什么呢?3/4×1/4到底是多少呢?我们可以利用手中的长方形纸折一折,涂一涂看看3/4×1/4等于多少

  (1)学生折一折,涂一涂。

  (2)同桌互说你是怎么想的。

  (3)汇报

  生:我把这张纸平均分成4份,取了其中的3份。我再给他这样平均分成4份,取了其中的1份。刚才我们是竖着平均分,现在我们是横着平均分。 (点:是谁的1/4?)

  我先竖着分平均分成4份,取了其中的三份,我再横着分,把3/4平均分成4份,取其中的1份,就是3/16

  你能把它刚才说的过程结合图形再说一遍吗?

  还有的同学是这样做的,大家一起看一下,这样行不行?行,你看行吗?

  第一次分的时候3/4能分出来。第二次分3/4的1/4怎么分?有麻烦。所以我们分的时候可以先竖着分,再横着分。或者先横着分再竖着分。

  (4)请你说一说,红色部分占斜线部分的几分之几?红色部分占整

  张纸的几分之几?

  (5)你那么3/4×1/4=?

  (6)通过折我们知道了3/4×1/4=3/16

  (7)观察:结合图观察3/16的16表示什么?(表示分的份数)3表示什么?(3/4和1/4共同的部分)

  2、做一做:按照上面的方法折一折,想一想,并算出结果。

  3/8×1/22/3×1/3

  师:请认真观察1/2×1/2=1/41/4×1/2=1/8 3/4×1/4=3/16 3/8×1/2=3/162/3×1/3=2/9算式

  (1)观察思考:观察这几组式子你能发现什么?(手)举例子来说

  (2)说一说:你能总结分数与分数相乘的计算方法吗?

  (3)小结:分数与分数相乘,分子与分子相乘的积作分子,分母与分母相乘的积作分母。这就是今天这节课所要学习的分数乘分数的计算方法。

  3、试一试:

  1/4×2/3 3/5×2/9 7/8×5/14

  强调:能约分的要先约分。

  (三)看书质疑

  三、课堂练习

  2、解决问题。

  (1)教科书第8--9页“练一练”第2、3、4、6、题。

  学生完成后,说说解题思路。

  (2)书第9页数学故事“唐僧分西瓜”

  四、全课总结

分数乘法教案8

  教学内容:

  教科书15页,例2及做一做,练习四8─10题。

  教学目的:

  (1)、会画线段图分析分数乘法两步应用题的数量关系。

  (2)、掌握分数两步连乘应用题解答方法,并能正确解答。

  (3)、进一步培养学生初步的逻辑思维能力。

  教学重点

  分析分数乘法两步应用题的数量关系。

  教学难点

  抓住知识关键,正确、灵活判断单位1。

  教学过程:

  (一)、复习引入:

  1、先说说各式的意义,再口算出得数。

  2、指出下面含有分数的句子中,把谁看作单位1。

  (1)乙数是甲数的。(甲数)

  (2)乙数的相当于甲数。(乙数)

  (3)大鸡只数的等于小鸡的只数。(大鸡)

  (4)大鸡的只数相当于小鸡的。(小鸡)

  (二)、探究新知:

  1、出示例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的钱是小华的。小新储蓄了多少元?

  (1)审题:

  全体默读,再指名读,说出已知条件和问题。

  师生边讨论边画出线段图。

  先画一条线段表示谁储蓄的钱数?为什么?再画一条线段表示谁储蓄的钱数?画多长?根据什么?

  (根据:小华的钱数是小亮的,把小亮的钱数看作单位1,平均分成6份,再画出与这样的5份同样长的线段表示小华储蓄的钱数)

  然后画一条线段表示谁储蓄的钱数?画多长?根据什么?

  (又根据:小新的钱数是小华的,把小华的钱数看作单位1,平均分成3份,画出与这样的2份同样长的线段表示小新储蓄的钱数)。

  小亮

  18元

  ?元

  ?元

  小华

  小新

  (2)分析数量关系:

  引导学生从已知条件分析:根据小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,可以把谁看作单位1,求出谁的钱数?再根据小新储蓄的钱是小华的,又可以把谁看作单位1,求出谁的钱数?

  也可以多问题分析:要求小新储蓄多少元,就要知道谁的钱数?这个数量题目中告诉我们了吗?所以要先求出谁的钱数?再求出谁的钱数?

  (3)确定每一步的算法,列出算式。

  怎么求小华的钱数?

  根据小华的钱数是小亮的,把小亮的钱数看作单位1,求小华储蓄多少钱就是求18元的.是多少,用乘法计算。

  板书:18╳=15(元)

  怎么求小华的钱数?

  根据小新的钱数是小华的,把小华的钱数看作单位1,求小新储蓄多少钱就是求15元的是多少,用乘法计算。

  板书:15╳=10(元)

  把上面的分步算式列成综合算式:

  板书:18╳╳=10(元)

  (4)检验写答:

  答:小新储蓄了10元。

  2、做一做。

  学生独立画出线段图,教师巡视指导。

  3、归纳:今天学习的是连续两次求一个数据的几分之几是多少的应用题,解答这类题的关键是弄清第一步把谁看作单位1,第二步把谁看作单位1。

  (三)、课堂练习:

  独立完成练习四的第8、9、10题。

  板书设计:

  例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的钱是小华的。小新储蓄了多少元?

  小亮

  18元

  ?元

  ?元

  小华

  小新

  18╳=15(元)

  15╳=10(元)

  18╳╳=10(元)

  答:小新储蓄了10元。

分数乘法教案9

  教学目标 :

  1. 通过知识迁移,使学生明确求一个数的几分之几是多少可以用乘法进行计算。

  2. 通过操作活动使学生理解分数乘分数的算理,并经过观察、猜测、验证归纳出分数乘分数的计算方法,并能熟练计算。

  3. 通过对算理、算法的探究培养学生的观察力、推理能力、归纳能力。

  教学重点:

  掌握分数乘分数的计算方法,并能熟练计算。

  教学难点:

  理解分数乘分数的乘法意义及算理。

  教具准备:

  多媒体课件。

  教学过程:

  一、导入新课(激发兴趣,明确目标)

  1. (课件出示一个正方形)这个正方形我们可以用数字“1”表示。现在涂色部分是它的几分之几? ( )

  2. 如果取这 的 ,现在得到的是整个正方形的几分之几?(看图得出结论 )

  3. 如果再取这 的 ,又是多少呢?你是怎么想的?(在学生回答后再出示图验证)

  【设计意图:讲课一开始采用了看图说分数的方式引入,既是对分数意义的一个回顾,也为本节课理解分数乘分数的算理提供了形的依托。】

  二、合作探究(小组合作,解决问题)

  出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)

  (一)探究几分之一乘几分之一的算理算法

  1. 求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的整数乘分数的意义进行类推)

  求一个数的几分之几,我们可以用乘法来计算。

  2. 等于多少呢?说说你的想法,并把你的想法在纸上写下来。

  3. 学生进行尝试(可引导学生用画图的方式来解释自己的想法)。

  4. 进行交流反馈

  重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固

  把1个正方形看作1公顷,先平均分成2份,每份表示 公顷,再把 公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是 公顷。

  5. 得出结果

  根据大家的想法, 。我们再来看看本节课开始的图形,是不是也可以用乘法算式来表示?

  6. 猜想计算方法

  观察这几个算式,说说你发现了什么?你觉得几分之一乘几分之一可以怎样计算?这个方法可以推广到所有分数乘分数的计算中吗?

  【设计意图:尊重学生,培养学生的学习探索能力是很重要的。本节课的教学除了有之前所学分数的意义作为基础之外,学生还在前一课时明确了整数乘分数可以用来表示一个数的几分之几是多少,因此在本堂课中完全可以放手让学生们自己去思考、学习、尝试,教师只要起到一定的点拨作用就可以了。】

  (二)探究几分之几乘几分之几的算理算法

  1. 尝试猜想

  请你试着用这个方法解决第二个问题:求 公顷的 ,用乘法算式表示就是 。根据我们刚才的想法,结果应该是?( 公顷)。这个猜想正确吗?能不能想办法来进行验证?在老师提供的练习纸中画一画、算一算,并和同桌进行交流,有困难的.学生也可以打开课本第4页看一看。

  2. 探究验证。学生自行探索分数乘法的计算方法。(探索完成的学生可以完成例3做一做第2题进一步验证)

  3. 验证反馈

  (1)请几个采用不同验证方法的学生进行一一展示。

  (预计方法:A. 画图(图形或线段);B. 转化成小数再进行计算;C. 利用分数的意义进行计算)

  (2)请已经完成例3做一做2的学生说一说自己计算的结果及得到的想法。

  4. 得出结论

  看来咱们的猜想是正确的,分数乘分数如何计算?在同学讨论回答后得出结论:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。

  【设计意图:猜想——举例——验证——得出结论是学生学习数学的一种方式,在本节课的设置上先提供了探索的范例,再让学生提出猜想,最后通过举例、验证形成共识,得到分数乘分数的计算法则,理解算理,使学生既获得了探索的体验,又掌握了基础知识。】

  三、展示交流(展示交流,调拨归纳)

  简化计算过程

  根据我们所得的结论,试着解决下面的问题

  出示例4:无脊椎动物中游泳最快的是乌贼,它的速度是 千米/分。

  (1)李叔叔的游泳速度是乌贼的 。李叔叔每分钟游多少千米?

  (2)乌贼30分钟可以游多少千米?

  1. 读题,独立列式并解答。

  2. 反馈

  (1)题(1)展示不同的计算过程:A、先计算再约分;B、先约分再计算。

  (2)题(2)明确整数与分数相乘,可以在计算时直接将整数和分母约分,结合学生的情况说明约分的书写格式。

  (3)对比体会得出结论:在计算时,先仔细观察数的特征,能约分的先约分再乘,会比较简单。

  3. 练习

  例4做一做1。

  【设计意图:培养简便计算的意识对于提高学生计算的准确性和速度至关重要。让学生通过计算和对比体会到在分数乘法中先约分再计算比较简单,对培养学生的简算意识很有帮助。】

  四、拓展总结(应用拓展,盘点收获)

  1. 基础练习

  (1)先看数再计算(练习一6、7两题)

  反馈校对、纠错。

  在反馈时通过对比、纠错让学生明白先观察数的特征,可以约分的先约分再计算,这样能又对又快地得到结果。

  预计错题,估计错例:由于4和 的分子相同,学生有可能会将整数4与分子4相约分,在计算 时,结果错算成 。应该使学生明确:整数与分数相乘,可将整数与分母约分(也就是把整数看成分母是1的分数),再进行计算。

  【设计意图:将练习一的6、7两题并在一起,并将题目的考查形式改成先看数再计算,有助于学生形成计算的审题习惯。让学生发现通过观察可以感知数的特征并进行约分,这样可以让计算变得更加简单,正确率也可以得到更大的提升。第6题不以改错的方式出现,而直接以计算题的方式出现,是出于不强加错的思考,来自于学生的错例,学生更易于记在心上。】

  (2)完成例3、例4做一做剩下的题

  反馈校对、纠错。

  在校对答案后,可以进行小结,使学生进一步明确:分数乘法就是求一个数的几分之几是多少的运算。

  2. 练习提升

  在○里填“>”“<”或“=”。想一想,哪些式子,你不计算就可以直接填出来?

  ○ ○ ○ ○

  反馈:请学生说说自己的想法,哪些式子可以不计算就直接得出结果。

  (1)题1、题3主要引导学生从分数乘法的意义来理解;

  (2)题2、题4主要是对分数计算方法的巩固。

  【设计意图:计算的练习往往比较枯燥,这时题目的设计就显得比较重要了。本题的设计让学生们在练习反馈中既对分数乘法的意义进行了回顾,又将整数乘分数和分数乘分数的意义进行对比,还对计算方法进行了巩固和应用,对学生的思维的拓展也是大有益处的。】

  3.拓展总结

  这节课我们学习了什么?我们是怎样得出这些结论的?

  没错,“猜想——举例——验证——得出结论”是我们学习数学很有效的方法,在以后的学习中,同学们可以用这样的思路去学习更多的数学知识。

  【设计意图:在对本节课的小结中,对猜想——举例——验证——得出结论的数学学习方法进行回顾,对于六年级的学生来说很重要。】

分数乘法教案10

  一教育

  21jy_1155220435 20xx-09-29 00:27苏教版5.09M 3个学币1星级

  二分数乘法

  本单元是在学生掌握整数乘法,理解分数的意义和基本性质,能正确计算分数的加、减法的基础上进行编排的。通过学习分数乘法的计算,不仅可以解决有关的实际问题,而且能为后面学习分数除法和百分数奠定重要基础。本单元的内容包括分数与整数相乘、分数与分数相乘、分数连乘以及倒数的认识。教学要求是使学生理解分数乘法表示的意义,理解和掌握分数乘法的计算法则,并能比较熟练地计算分数乘法,能应用分数连乘计算和解决求一个数的几分之几是多少的简单实际问题。

  第1课时分数与整数相乘

  教材第28~29页例1及相关练习。

  1.使学生通过自主探索,理解分数与整数相乘的意义和整数乘法相同,初步理解分数与整数相乘的计算法则。

  2.使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。

  重点:理解分数与整数相乘的意义,掌握其计算方法。

  难点:分数与整数相乘的意义和计算法则。

  课件。

  师:同学们,我们已经学会了整数和小数乘法的计算方法,现在,我们开始来学习分数乘法的计算方法。

  复习:(1)5个12是多少?怎样列式?

  (2)++=++=

  学生做完第(1)题后,提问:整数乘法的意义是什么?

  做完第(2)题后,提问:这两道题各有什么特点?

  师:计算第(2)题第2个算式有没有更简便的方法呢?

  师:带着这个问题,今天我们就来学习分数与整数相乘。(板书课题。)

  1.分数与整数相乘的意义。

  课件出示教材第28页例1中长方形直条图,标注出长是“1米”。

  师:做一朵绸花用米绸带,你能在图中涂色表示出这个已知条件吗?

  出示问题:小芳做3朵这样的绸花,一共用绸带几分之几米?

  师:你能在图中涂色表示出来吗?(先由学生回答,再涂色。)

  师:解决这个问题可以怎样列式?

  (指名回答,教师板书。)

  生:++。

  师:求3个相加的和还可以用乘法计算,你会列式吗?

  生:3×。

  教师板书:×3或3×。

  师:这个算式中的是什么数?式中的3是什么数?

  师:由此可以看出,分数与整数相乘的意义和整数乘法的意义是相同的,都是求几个相同加数的和的简便运算。

  2.探索分数与整数相乘的计算方法。

  (1)学生尝试计算×3。

  师启发:×3的积是多少?你能联系已有的知识从不同角度说明吗?

  生:。

  学生试做,教师启发总结分数与整数相乘的计算法则。

  师:×3=,由此你发现分数与整数相乘是怎样计算的?

  生:用分数的分子乘整数,所得的积作为积的分子,原分数的分母作为积的分母。

  师:以后计算分数乘整数时,不必再写加法算式,直接根据分数与整数相乘的计算法则进行计算。

  (2)解决例题的第(2)题。

  师:小华做5朵这样的绸花,一共用绸带几分之几米?

  学生尝试列式计算,指名板演。

  点评时明确:计算结果不是最简分数时,要约成最简分数。

  (3)总结计算方法。

  师:比较刚才两道算式的计算过程,你发现它们有什么相同的地方?有什么不同的地方?分数与整数相乘,可以怎样计算?在小组里交流。

  小结:分数与整数相乘,把分数的分子与整数相乘的积作分子,分母不变。计算时能约分的可以先约分再计算出结果。

  1.教材第29页“练一练”。

  第1题让学生按要求在图中涂色,然后列式计算。第2题指定学生板演,集体讲评。

  2.教材第32页“练习五”第1~2题。

  学生独立完成,集体订正。

  3.教材第32页“练习五”第3~5题。

  学生独立完成,再组织交流:列出了哪几道算式?列出的乘法算式与加法算式有什么联系?

  本节课学习了哪些内容?通过学习你有哪些收获?还有哪些疑问?

  1.课前对学生的估计过高,可能没关注到全局。这也提醒我,备课不仅要备教材、备教案,更重要的还是要备好学生,这是上好一堂课的关键。

  2.对学生的多样思维应加大评价力度。评价一个学生,要适时、适当,决不能敷衍,更不能抹杀,否则可能会压制学生的思维积极性。这一点,在今后的教学中,我还有待加强。

  3.在课后巩固的作业设计中,我本着“精”的原则,尽量根据学生的学习反馈去设计一些题目,做到精讲精练。既学会知识,又能熟练运用。

  第2课时求一个数的几分之几是多少

  教材第29~30页例2及相关练习。

  1.使学生理解一个数乘分数的意义,知道求一个数的几分之几可以用乘法计算。

  2.通过操作、观察,培养学生的推理能力,发展学生的思维。

  一个数乘分数的意义以及计算方法。

  课件。

  师:同学们,上节课我们学习了分数与整数相乘的计算方法,在学新课之前我们先来复习一下上节课的内容。

  复习:计算下面各题,并说出计算方法。

  ×2 ×1 ×5

  师:上面各题都是分数与整数相乘,说一说分数与整数相乘的意义以及计算方法。

  指名回答,教师补充。

  师:今天,我们来学习“求一个数的几分之几是多少”的计算方法。

  教学例2。

  课件出示教材第29页例2花朵图,然后出示条件:

  小星做了10朵绸花,其中是红花,是绿花。

  引导学生理解:“其中”是什么意思?

  使学生明白是10朵中的,然后出示问题。

  (1)红花有多少朵?

  引导学生看图理解:求红花有多少朵,就是求10朵的是多少朵。

  师:怎么列式计算呢?(让学生应用已有的知识经验解决。)

  生:10÷2=5(朵)。

  师:为什么可以用上面的算式计算?

  生:10朵的是红花,把10朵花平均分成2份,其中的一份是红花。

  在此基础上指出:求10朵的是多少,可以用乘法计算。

  教师说明要求,学生列式解答。

  (2)绿花有多少朵?

  可以先让学生在图中涂一涂,借助涂的过程理解求绿花有多少朵,就是把10朵平均分成5份,求这样的2份是多少,引导学生用以前的方法解决。

  生:10÷5×2=4(朵)。

  在此基础上指出:求10朵的是多少,可以用10×来计算。

  师:求10朵的是多少,也就是把10朵花平均分成5份,求这样的2份是多少。计算10×时要先约分,实际上也就是先用10÷5,求出1份是多少,再乘2,求出2份是多少。

  (3)引导学生进行比较。

  师:通过对上述两个问题的计算,你明白了什么?

  引导小结:求一个数的几分之几是多少,可以用乘法计算。

  1.教材第30页“练一练”第1题。

  先让学生根据题意涂色,然后列式解答。

  2.教材第30页“练一练”第2题。

  通过填空,使学生进一步明确:求一个数的几分之几是多少,可以用乘法计算。

  3.教材第32页“练习五”第6~9题。

  本节课学习了哪些内容?通过学习你有哪些收获?还有哪些疑问?

  “求一个数的几分之几是多少”是本单元的教学重点,是在学习了分数与整数相乘的意义和计算方法的基础上进行教学的,同分数与整数相乘的意义不完全相同,需要加以拓展。计算方法上“求一个数的几分之几是多少”的计算方法推导过程比较复杂,学生较难理解。它也是今后学习分数除法的意义和计算方法以及分数乘、除法应用题的基础。在教学过程中,部分学生对“求一个数的几分之几是多少”的意义难以理解,可适当补充一些变式训练来帮助学生理解,以提高学生分析题意、理解数量关系的能力。

  第3课时“求一个数的几分之几是多少”的简单实际问题

  教材第31页例3及相关练习。

  1.使学生结合具体情境,继续学习用分数乘法解决“求一个数的几分之几是多少”的简单实际问题,丰富对用分数表示的数量关系的认识,拓展对分数乘法意义的理解。

  2.使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

  重点:分析“求一个数的几分之几是多少”的数量关系。

  难点:用分数乘法解决相关的实际问题。

  课件。

  课件出示教材第31页例3中的条形图。

  师:从图中你能知道什么?

  引导学生用分数描述图中的数量关系。如:把黄花朵数看作单位“1”,红花是黄花的,绿花是黄花的(或);把红花朵数看作单位“1”,黄花是红花的,绿花是红花的等。

  1.教学例3第(1)题。

  出示题目:黄花有50朵,红花比黄花多,红花比黄花多多少朵?

  引导学生看图思考:红花比黄花多的朵数是图中的哪个部分?它是哪种花朵数的?也就是多少朵的?

  追问:50朵的是什么?

  指出:“红花比黄花多”,是把黄花朵数看作单位“1”,红花比黄花多的朵数是50朵的。

  指名列式,教师根据学生的回答板书:50×。

  师:列式时你是怎样想的?

  学生完成计算。

  2.教学例3第(2)题。

  出示题目:绿花比黄花少,绿花比黄花少多少朵?

  学生尝试解答,指名板演。

  追问:“绿花比黄花少”这个条件中,要把哪个数看作单位“1”?要求绿花比黄花少多少朵,就是求多少朵的?

  引导学生思考:你认为理解用分数表示的数量关系时,关键是什么?

  指出:理解用分数表示的数量关系时,关键是弄清这个分数是哪两个数量比较的结果,比较时把哪个数量看作单位“1”的。

  1.教材第31页“练一练”。

  学生独立完成。(对有困难的学生,提示可以先按要求画一画,再完成填空。)

  2.教材第33页“练习五”第10题。

  先说出每个分数的意义,再把数量关系补充完整。

  3.教材第33页“练习五”第11~15题。

  独立解答,交流思考过程,集体订正。

  通过本节课的学习,你有什么收获?你在今天课堂上的表现怎么样?

  这节课主要是让学生通过具体的情境进一步理解“求一个数的几分之几”可以用乘法计算。在以前没学分数乘法的时候,我们是先求出1份的量再乘相应的份数来解答“求一个数的几分之几是多少”的问题。从课堂反馈看,刚开始的时候有一小半的'学生还是不习惯用分数乘法计算,还是把它看成份数去理解。但经过一系列的训练后大多数的学生在列式时已经很自然地把单位“1”的量与它的几分之几相乘。在今后的教学中应进一步培养学生的计算能力。

  第4课时分数与分数相乘

  教材第34~35页例4、例5及相关练习。

  1.使学生知道分数与分数相乘的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。

  2.使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

  重点:分数与分数相乘的意义和计算方法。

  难点:理解分数与分数相乘的算理。

  课件、长方形纸。

  1.计算下面各题。

  4× 7× ×4 ×12

  2.说说分数与整数相乘的计算方法。

  小结:分数和整数相乘,用分数的分子与整数相乘的积作分子,分母不变。能约分的先约分,再计算。

  3.课件出示:×。

  师:这道题与之前学习的分数乘法有什么不同?今天我们就一起来探究分数与分数相乘的计算方法。

  1.教学例4。

  课件出示教材第34页例4题、图。

  师:画斜线的部分是的几分之几?又是这个大长方形的几分之几?

  引导学生明确:左图中斜线部分占的,右图中斜线部分占的。

  师:求的是多少,可以怎样列式?求的呢?

  师:你能列算式并看图填写出书中的结果吗?

  (打开教材第34页完成填空。)

  师:根据填的结果想一想怎样计算分数与分数相乘?

  生:分数与分数相乘,用分子相乘的积作分子,分母相乘的积作分母。

  2.教学例5。

  课件出示教材第34页例5题、图。

  师:×和×分别表示的几分之几?

  师:你能用前面得出的结论计算这两道题吗?

  学生试做,订正完后师问:你能用什么方法来验证你的计算结果呢?

  师:请同学们在自己准备的长方形纸上先涂色表示,再画斜线表示的和的。看看操作的结果与你计算的结果是否一致。

  学生动手操作,教师巡视,对有困难的学生进行指导。

  3.归纳总结。

  师:比较刚才计算的每个积的分子、分母与它的因数的分子、分母,你有什么发现?

  归纳出分数与分数相乘的计算方法:分数与分数相乘,用分子相乘的积作分子,分母相乘的积作分母。

  4.完成教材第34页“试一试”第1题。

  提醒学生注意:计算分数与分数相乘时,能约分的要先约分再计算。

  通过交流,进一步明确分数与分数相乘的计算方法。

  5.分数与分数相乘的计算方法的推广。

  请同学们先完成“试一试”第2题的填空,提醒学生把整数看作分母是1的分数来计算。

  讨论:分数与分数相乘的计算方法适用于分数与整数相乘吗?为什么?

  学生分组讨论。

  明确:(1)整数可以看作分母是1的分数,所以分数与分数相乘的计算方法也适用于分数与整数相乘。

  (2)实际计算时,可以直接按以前学过的方法计算分数和整数相乘,而不必把整数改写成分母是1的分数,这样比较简便。

  (3)也可以把整数与分数直接进行约分后再计算,这样更简便。

  1.教材第35页“练一练”。

  引导学生直接用分数与分数相乘的方法进行计算。

  2.教材第37页“练习六”第1题。

  先在图中画一画,再列式计算。

  3.教材第37页“练习六”第2~5题。

  学生独立完成,集体评讲。

  今天我们学习了什么?分数与分数相乘怎样计算?

  本节课主要教学分数与分数相乘的计算方法。计算方法的理解和掌握是一个意义获得的过程,因此在教学过程中应充分引导学生在直观图的支持下,在分析比较、探讨交流的环境中逐步发现规律,在深层次的思考和讨论中完善方法、构建方法体系。通过学习,有些学生虽然掌握了分数与分数相乘的计算方法,但在实际操作中错误较多,约分的方法也不能掌握,在以后的教学中应让学生进一步理解分数乘法的意义,加强计算的训练,熟练掌握计算的方法。

  第5课时分数连乘

  教材第35~36页例6及相关练习。

  1.学会计算分数的连乘,并掌握分数连乘的计算技巧。

  2.培养学生应用知识的能力和计算能力,提高分数乘法计算的熟练程度。

  重点:分数连乘的简便算法和计算时约分的简便方法。

  难点:正确理解并掌握用分数连乘解决简单的实际问题的解题思路。

  课件。

  1.口算。

  ×6=×=10×=×=

  2.师:请同学们说说分数乘法怎样计算?怎样约分计算比较简便?

  师:同学们都掌握得不错,今天我们来学习分数连乘。

  (板书课题:分数连乘。)

  1.课件出示教材第35页例6,理解题意。

  师:从题中你能得到哪些数学信息?

  同桌互相交流。

  2.画图分析。

  教师先画一条线段,表示一班做绸花的朵数。

  启发学生思考:怎样用线段表示二班做绸花的朵数?教师引导学生画一画。

  师:你会用线段表示三班做的绸花朵数吗?

  学生独立画一画。

  3.列式计算。

  (1)师:要求三班做了多少朵,要先算什么?

  生:先算出二班做的朵数,再计算三班做的朵数。

  (2)师:怎样列式呢?

  学生独立列式,指名板演。

  生:135×=120(朵) 120×=90(朵)

  (3)分布算式可以列成综合算式135××。

  师:这样的乘法算式你会算吗?

  讨论计算过程。

  师:有没有不同的算法?

  比较不同算法。

  师:这两种算法各是怎样算的?你认为哪种算法比较简便?

  4.归纳方法。

  师:今天学习的分数乘法和以前学习的分数乘法有什么不同?怎样计算比较简便?

  1.教材第36页“练一练”。

  先让学生独立计算,再全班订正,交流算法。

  2.长方体的长是3米,宽是米,高是米,它的体积是多少立方米?

  3.教材第37页“练习六”第6题。

  学生独立完成后,集体订正。

  4.教材第38页“练习六”第7~9题。

  引导学生先分析题意,再列式计算。

  这节课学习了什么内容?分数连乘怎样计算比较简便?

  今天教学分数连乘,从例题看还是比较简单的,学生学习时比较轻松。

  本节课我把教学重点放在引导学生画线段图上,通过引导学生认识并画出线段图,帮助学生理解条件中单位“1”的转换,分析清楚数量之间的关系。对于分数连乘的计算,有一些学生约分时不太熟练,感觉速度较慢。

  在课后解决实际问题的练习中发现有个别学生是先把两个分数相乘进行计算的,这样的计算我觉得可以理解成是把间接的分数表示转化成直接的分数表示。总的来说,本节课的课堂教学不理想,希望通过多做题来补救。

  第6课时练习课(分数乘法)

  教材第38页第10~15题。

  1.提高学生计算分数乘法的熟练程度,能够正确地计算分数乘法。

  2.提高学生的计算能力和学好数学的信心。

  重点:正确地进行分数乘法的计算。

  难点:灵活运用分数乘法解决实际问题。

  课件。

  师:上节课我们学习了什么内容,我们应该注意什么?

  生:知道分数连乘的简便算法和计算时约分的简便方法。

  1.教材第38页“练习六”第10题。

  引导学生复习单位间的进率后,学生独立完成,然后订正。

  2.教材第38页“练习六”第11题。

  学生独立计算,完成后观察每组数的结果有什么特点。

  概括:一个数与比1小的数相乘,积小于原数;一个数与比1大的数相乘,积大于原数。

  3.教材第38页“练习六”第12~14题。

  独立完成后订正。

  4.教材第39页“练习六”第15题。

  引导学生分析题意,要求鱼缸里有水多少立方米,需要哪些条件。

  你有哪些收获?还有什么不明白的地方?

  本节课作为分数乘法的一个基础知识的巩固和提升。巩固的内容包括:分数乘法的意义、计算法则以及分数应用的相关知识。在整个教学过程中,我把自己的角色真正转变为学生学习的组织者、引导者与合作者。在习题中,我所选择的习题与生活紧密联系,使学生感受到数学就在身边,生活中处处存在着数学。不足之处:在教学中对学生评价的语言不够到位,没有起到激励的作用,因而课堂气氛不是特别活跃。

  第7课时倒数的认识

  教材第36页例7及相关练习。

  1.认识倒数的概念,掌握求倒数的方法,能熟练地求一个数的倒数。

  2.培养学生数学思考的能力。

  重点:掌握求倒数的方法。

  难点:能熟练地求一个数的倒数。

  课件。

  师:在我国的文字里,有很多有趣的汉字,现在让我们一起来找找看。(课件出示有趣的汉字:呆和杏、吴和吞……)

  师:你们发现这些汉字的特点了吗?(引导学生发现:这些汉字上、下交换位置以后,就成了新的汉字。)

  师:在数学中也有这样的现象,现在我们就一起来认识倒数。(板书课题。)

  1.教学例7。

  (1)课件出示教材第36页例7。

  师:下面的几个分数中,哪两个数的乘积是1?

  生:×=1,×=1,×=1。

  (2)引出概念。

  师:乘积是1的两个数互为倒数。例如,和互为倒数,也可以说是的倒数,是的倒数。

  (3)师:你能举例说明还有哪些数互为倒数吗?

  学生举例来说,教师及时评议。

  追问:怎样的两个数互为倒数?为什么要说“互为倒数?”

  2.教学求一个数的倒数的方法。

  师:观察上面倒数和原数的关系,想一想,一个数的倒数与原数相比,分子、分母的位置发生了什么变化?

  小组讨论,全班交流。

  师:求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

  师:5的倒数是几?1的倒数是几?

  追问:0有倒数吗?为什么?

  指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。

  总结:除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

  3.完成教材第36页“练一练”。

  学生独立完成,指名回答。

  指出:分子是1的分数,它的倒数就是分母;整数的倒数就是这个整数作分母,分子是1的分数。

  1.教材第39页“练习六”第16题。

  学生在书上填空后,集体订正。

  2.教材第39页“练习六”第17题。

  指名口头回答。

  3.教材第39页“练习六”第18题。

  学生在书上填空后,集体订正。

  4.教材第39页“练习六”第19题。

  重点引导学生讨论每一组数的规律。

  这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?

  本节课先让学生通过对几个分数的观察,找出结果是1的算式,再让学生举例,观察算式的特点,理解“互为”的意思,最后总结出倒数的意义。我发现像这样难度不是很大的内容更要体现学生的主体性,让学生通过观察、比较、归纳、总结出倒数的意义,使学生在参与整个学习过程后有真正的收获。特别是通过对比的形式激发学生的学习兴趣,学生发现了算式的特点,举例后进一步发现有这样特点的算式是写不完的。然后让学生仿照老师的样子,通过例子说倒数的意义,并强调“互为”,让学生根据已有的知识经验说说怎样解释,这对学生掌握概念是非常必要的。

  第8课时整理与练习

  教材第40~42页的内容。

  1.使学生对本单元所学知识有清楚地认识。

  2.使学生进一步认识分数乘法表示的意义,进一步掌握分数乘法的计算法则,能比较熟练地进行分数乘法的计算。

  3.提高学生的总结能力,培养良好的学习习惯。

  重点:对本单元所学知识有清楚的认识。

  难点:比较熟练地进行分数乘法的计算。

  课件。

  师:本单元我们学习了哪些内容?

  师:怎样计算分数乘法?

  小组讨论,指名汇报。

  师:怎样的两个数互为倒数?怎样求一个数的倒数?

  师:举例说说你能用分数乘法解决哪些实际问题。

  全班交流,指名回答。

  1.教材第40页“练习与应用”第1题。

  学生先涂色再计算,学生独立完成后,集体订正。

  2.教材第40页“练习与应用”第2~3题。

  学生独立完成后订正。

  3.教材第40页“练习与应用”第4题。

  引导学生思考:如何把高级单位化成低级单位?

  学生独立解答,评讲时结合问题说说思考方法。

  4.教材第40~41页“练习与应用”第5~8题。

  学生独立列式解答,并说说思考的过程。

  5.教材第41页“练习与应用”第12题。

  (1)引导学生读懂题意,使学生明确:要求妈妈的身高,必须先求出小明的身高。

  (2)学生独立列式计算,集体评议。

  6.教材第42页“探索与实践”第14题。

  学生自己探索规律,全班交流。

  7.教材第42页“评价与反思”。

  学生自我评价,小组内交流。

  在这节课上,我们完成了哪些任务?你还有什么疑问吗?

  本节课作为分数乘法基础知识的整理与练习,为了达到本节课预定的目标,我充分发挥学生的主体地位,注重整理与练习课的条理性和系统性。本节课主要是帮助学生进一步巩固对分数乘法意义的理解,掌握分数乘法的计算方法,感受分数乘法的实际应用价值,提高学生用分数乘法解决简单实际问题的能力。

分数乘法教案11

  《分数乘法》

  教学目标和要求

  1、结合具体情境,在操作的基础上探索并理解分数乘分数的意义;

  2、探索并掌握分数乘分数的计算方法,并能正确计算;

  3、能解决简单的分数与分数相乘的实际问题,体会数学与生活的密切联系,分数乘法

  (三)教案。教学重点

  1、在具体情境中探索并理解分数乘分数的意义;

  2、探索并掌握分数乘分数的计算方法,并能正确计算;教学难点本课的难点让学生通过折纸来解决,这一动手活动让学生充分理解了分数乘法的算理,帮助学生推导分数乘分数的计算法则。

  教学准备

  1、每人准备一条约10厘米长的纸条;

  2、每人准备2张长方形的纸。

  教学过程一、探索分数乘分数的意义和计算方法。

  1、直接引入庄子这个故事,先让学生读一读教科书第7页的一段话。PPT出示。让学生紧接着思考这个问题“一尺之捶,日取其半,万世不竭”到底是什么意思。在学生理解了这句话的意思之后,提问:“庄子老人家这句话到底对不对呢?”“我们能不能来验证一下呢?”。

  ⑴拿出一张纸条当作一尺之捶,同学们先把纸条对折了一次。师:“现在的一半我们可以用多少来表示啊?”生:“ ”师:剪去一半,还剩下多少?这时“ ”表示什么意思呢?剩下的占这张纸的“ ”用算式表示:1*1/2师:请同学们再把剩下的“ ”对折一下,再剪去一半(得到四分之一)谁能说说这又表示什么意思呢?”生“就是再取一半的意思”“是在原来一半的基础上再取一半”“就是的师重复:这部分表示的是二分之一的二分之一。师:“根据前面所学过的内容,你能用一个算式表示出剩下部分占这张纸的'几分之几吗?”学生很快就写出了1/2×1/2。再引导学生认识这个乘法算式所表示的意义。师问:为什么用乘法计算?这个算式表示什么意思?得数是多少?学生列出算式后,引导学生理解,求剩下的部分占这张纸条的几分之几就是求1/2的1/2是多少,与上节课学习的求一个数的几分之几的意义相同,所以用乘法计算。师再问:“如果我们按照庄子的说法那接下去该怎么求呢?”学生答“再乘1/2”得到1/4×1/2=1/8,如果再往后求还剩下多少,那就再乘1/2 ,“一直乘下去,永远也乘不尽”现在你们知道万世不竭的意思了吧。

  2、折一折,涂一涂让学生拿出课前准备好的一张长方形纸,按照教科书的要求(PPT出示)折一折,涂一涂。讨论:

  (1)请你说一说,红色部分占斜线部分的几分之几?占整张纸的几分之几?你能用算式表示出这幅图的意思吗?3/4×1/4=3/16,就是求3/4的1/4是多少?

  (2)你能按照上面的方法先涂出1/4,再涂出1/4的3/4吗?

  学生独立完成,并列式汇报

  3、做一做:根据图示,想一想,列出算式,算出结果。

  1/2×1/4=1/2×3/4=

  二、讨论小结分数乘分数的计算方法观察上面的例子,你发现积的分子、分母与两个因数的分子、分母各有什么关系?在小组内交流。说一说:你能总结分数与分数相乘的计算方法吗?小结:分数与分数相乘,分子与分子相乘的积作分子,分母与分母相乘的积作分母。想一想:此法与分数与整数相乘的方法有矛盾吗?

  三、巩固练习:

  1、P7做一做

  2、P8试一试:强调,能约分的要先约分。

  3、提高练习:

  (2)教科书第9页数学故事“唐僧分瓜”。通过这节课的学习,你有什么收获?通过这节课的学习,我们知道了分数乘法的意义就是求这个数的几分之几是多少;计算分数乘法时,要把分子相乘的积作分子,分母相乘的积作分母。板书设计分数乘法

  (三)1 *1/2=1/21的1/2是多少?

  3/4*1/4=3*1/4*4=3/161/2*1/2=1/41/2的1/2是多少?

  1/4*3/4=……… =3/161/4*1/2=1/81/2*1/4=………=1/8………1/2*3/4=………=3/83*3/4=3/1*3/4=9/4

分数乘法教案12

  教学内容:教科书第20页例2。

  教学目标:

  1、加深对解决求一个数的几分之几是多少的问题思路与计算方法的理解,使学生学会解答稍复杂的求一个数的几分之几是多少的问题。

  2、发展学生分析推理能力和解决实际问题的能力。

  教学过程

  播放公路上往来不断的车辆及噪杂的声音。

  师:噪音对人的健康有害,绿化造林可以降低噪音。

  出示画面(如教材第20页情境图)请学生说说对图意的理解。

  师:从图中我们知道了公路上车辆的声音是80分贝,经过绿化带的隔离,噪音降低了1/8。根据这些条件,你能提出什么问题?

  学生提问题,教师板书。(噪音降低了多少?绿化带这边听到的声音是多少分贝?)

  师:我们来解决第一个问题:噪音降低了多少?谁能把问题完整地叙述出来。

  生:公路上测得声音为80分贝,经过绿化带的隔离,噪音降低了1/8,噪音降低了多少?

  出示线段图

  请学生把条件与问题在线段上表示出来(如下图)。

  提问:把谁看作单位“1”?然后让学生独立解答。

  师:现在我们解决第二个问题。谁能把问题完整地叙述出来?

  生:公路上测得声音为80分贝,经过绿化带的隔离,噪音降低了1/8,现在听到的声音是多少分贝?

  师:线段图上哪一段表示“现在听到的声音有多少分贝”?

  把线段图补充完整。

  小组讨论探讨解决方法。

  汇报交流方法。

  第一种方法:先求出降低了多少分贝?再用原来的分贝数减去降低的分贝数。

  列式80-80×(1/8)=70(分贝)

  第二种方法:先求出现在听到的分贝数是原来分贝数的几分之几?再求出现在听到的声音有多少分贝?

  列式

  提问:1-1/8表示什么?在线段图上表示出来。

  师:比较这两种方法有什么不同?

  学生讨论交流。明确两种方法都是把原来声音的80分贝看作单位“1”,都需要求80分贝的`几分之几。但是第一种方法是根据已知条件先求出80分贝的1/8是多少,即降低了多少分贝,再求出现在听到的声音的分贝数。第二种方法是根据问题找到现在听到的分贝数占原来声音80分贝的几分之几,再根据分数乘法的意义求出现在听到的声音是多少分贝。

分数乘法教案13

  教学目标:

  1、使学生进一步理解求一个数的几分之几是多少的应用题的数量关系,掌握这类应用题的解题思路和解题方法。

  2、培养学生认真审题,独立思考的学习习惯。

  3、训练学生分析、解题问题的能力。

  教学过程:

  一、书上第44页上的第12题

  1、先引导学生观察每一组分数的大小特点,知道有一些分数比1大,有些分数比1小。计算后,再把每一个积分别与15(或36)比较。

  从而发现:一个数与比1大的分数相乘,所得的结果比原数大;一个数与比1小的分数相乘,所得的结果比原数小。

  2、书上第44页上的第13题

  引导学生根据第12题发现的规律,直接判断出每组两道算式得数的大小。

  二、说说分数的意义,并把数量关系补充完整

  (1)今年的产量比去年增产1/8。

  ×1/8=

  (2)钢笔枝数的2/5相当于圆珠笔的枝数。

  ×2/5=

  (3)花布的米数比白布长1/4。

  ×1/4=

  (4)实际每月比计划节约了1/10。

  ×1/10=

  (引导学生想到:单位“1”是哪个量,另一个量是多少,写出数量关系。)

  二、对比练习。

  1、有两块布,白布长15米,花布是白布的1/3,花布有多少米?

  2、有两块布,白布长15米,花布比白布长1/3,花布比白布长多少米?

  3、有两块布,白布长15米,花布长1/3米,白布比花布长多少米?

  (1)分别说说题中的分数是哪两个量比较的结果,比较时把哪个量看作单位1?

  (2)比较3题有何异相点?

  三、综合练习。

  1、一种商品原价是250元,现价是原价的4/5,现价是多少?

  2、一种商品原价是250元,后来降价了1/5,降价多少?

  3、修路队修一条1米的路,第一天修了全长的1/6,第二天修了全长的1/4。

  (1)两天分别修了多少米?

  (2)第二天比第一天多修多少米?

  (3)还剩多少米没修?

  四、作业

  课前思考:

  潘老师确实是多年教学毕业班老师,教学经验比较丰富。在她补充的练习中,3题对比练习是每届六年级学生易混淆之处,在此比较,加深对三种类型实际问题的印象,理清思维。增加的综合练习,是本课内容的拓展延伸。我要借用一下了。

  第二,在明天的教学中,我还要增加分数乘法计算练习,提高计算的正确率。

  课前思考:

  上完分数乘法的第三课时——简单的分数乘法实际问题(二)(例3)后,我们三位数学老师都感到这一课时的内容学生学得不够扎实,所以需要增加一课时,设计一些对比题,进一步提高学生分析数量关系的能力,尤其是加强对学习困难生的辅导。潘老师在根据学生学习情况后及时增加了这一节练习课,设计了“看关键句说数量关系”、“对比题”、“综合题”这几个层次的练习,练习题较典型,在课上,我们还是要组织学生认真读题,理解题目意思后再思考题中各数量间的关系。课上还要多给学生互相交流的机会,多说说数量关系,让更多的学生真正掌握分析数量关系的方法,学会思考。另外,练习八中的第12、13题要放进本课时,分数乘整数的计算练习也可增加些,计算正确率要提高,学生良好的计算习惯亟需培养。

  课后反思:

  由于自己在前两节课新授学习时轻视了这单元的难度,高估学生,所以在新学习分数乘法时,就说明:熟练以后可以省略中间的计算过程直接写出得数,且补充习题册上也有这样的要求,造成很多学生在计算还不熟练的'情况下就不愿意写出计算过程,结果计算正确率不高,还有部分学生计算方法没有得到完全巩固。所以在今天的练习课上,再次复习巩固计算方法,并且要求学生以后一定要写出计算过程,特别是有约分的类型,直到以后熟练后我再通知什么时候可以省略中间的计算过程。从今天的课堂作业看,这样操作确实收到了一定效果。

  第二,继续加强对数量关系的训练,关键是对其中分数含义的理解。只要学生能理解分数的意义,说明是将什么看作单位1,平均分成几份,表示这样的几份,那么写数量关系基本上没有困难了。同时,继续教学生学习借助线段图分析部分题目,这样更直观形象。

  课后反思:

  通过这节课的练习,大部分学生都能正确说出题中分数的具体含义和正确找出单位“1”的量,对课堂上预设的题完成的不错。从作业的反馈情况来看(要求写出数量关系),有部分学习困难的学生还是没能准确的找对单位“1”的几分之几表示哪个数量。对于这些学生课后还得加强这方面的辅导。

  课后反思:

  今天这节课的教学重点、难点是帮助学生学会分析简单分数乘法实际问题的数量关系,潘老师设计的教案,我再结合两个班级学生学习实际情况,补充了几道对比题,加强对不同类型实际问题数量关系的辨析。反思自己的教学,可能在组织学生分析数量关系时有点过于急噪,要加以改进。我想在根据关键句分析时,一是思考其中分数的意义,即找出单位“1”的量,然后分析谁是谁的几分之几,要把谁比谁多几分之几转化为谁是谁的几分之几,这是学生分析数量关系时感到困难的地方。二是可以借助画线段图理解数量关系,在画图分析的过程中能更清晰地看出两个数量间的关系,也为以后学习较复杂的分数乘、除法实际问题打好基础。

  从学生作业情况看,遇到题中要求写出数量关系仍有困难,特别是一些学习困难生。要抽时间进行个别辅导。

分数乘法教案14

  教学目标:

  能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的结果。

  情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  教学重难点:

  学生能够熟练的计算出分数乘以分数的`结果。

  教学方法:

  师生共同归纳和推理

  教学准备:

  教学参考书、教科书

  教学过程:

  一、复习导入

  教师出示教学板书,请学生计算下列分数乘法运算题。

  1/33/72/54/97/105/14

  教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

  学生寻找完毕,纷纷举手准备回答问题。

  教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。)

  二、课堂练习:

  学生做第一题折一折,涂一涂。让学生用折纸的方式再次验证分数乘以分数的运算法则,注意让学生体会分数的几分之几是多少?

  学生做第2题,注意让学生体验分数相乘的积于每一个乘数的关系。

  学生做第3题,让学生理解分数的几分之几与占整体1之间的关系。

  学生做第4题,让学生能够学会比较1/2的3/4和4/5占整体1的大小。

  学生做第5题,教师注意让学生整体的几分之几是多少?

  学生做第6题,让学生注意区分不同标准的几分之几是多少;占整体的几分之几。

  学生做第7题,教师注意让学生利用分数乘法学会解决生活中实际问题。

  第8题,学生根据学过的分数乘法知识,分辨一下唐僧分西瓜是否公平。

  三、课堂小结

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  分数乘法(三)

  1/23/43/8 ,2/44/54/10=2/5

  是整个操场1的3/8,2/

  5是整个操场1的2/5。

  分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。

分数乘法教案15

  分数乘法

  1、分数乘法的意义和计算法则:

  课时:1课时。 总课时:1课时。执行时间:

  课题:分数乘整数。

  教学目的:

  1、 使学生理解分数乘整数的意义;

  2、 握分数乘整数的计算法则,并能够正确地进行计算。

  3、 培养学生的学习兴趣。教具:多媒体教学课件。

  教学过程():

  一、 复习引入

  1、 5个12是多少?怎么样列式?

  算式:12+12+12+12+12=60或12×5=60

  小结:求几个相同加数的和,可以用加法算,也可以用乘法算。

  2、 计算:

  2/7+2/7+2/7 3/10+3/10+3/10

  (1) 说一说算法,(2)说一说表示的意义,(3)这道题是否可以用乘法计算?能写出乘法算式吗?

  二、 尝试、探究

  1、 分数乘整数的`意义,

  (1)学生说,教师板书:2/7×3 3/10×3

  (2)学生交流。(3)教师强调意义。

  2、 探究分数乘整数的计算法则,

  (1) 学生试计算3/10×3,汇报交流,

  方法一:因为3/10+3/10+3/10=9/10,所以3/10×3=9/10.方法二:3/10里面有3个1/10,3个3/10里面就有(3×3)个1/10也就是9/10.

  (3)肯定学生想法,

  课件演示【例1】看教本:

  小新、爸爸、妈妈一起吃一块蛋糕,每人吃2/9块,3人一共多少块?

  (1)学生审题, (2)引导学生看思考,

  (2) 学生交流板书:

  用加法算:2/9+2/9+2/9=2+2+2/9=6/9=2/3(块)

  用乘法算:2/9×3=2×3/9=6/9=2/3(块)

  答:3个人一共吃2/3块。

  (4)小结计算法则:

  三、 巩固练习

  1、 做练习一的第1题。

  2、 做一做,

  四、 作业:第3、4题。

  五、 后记:

【分数乘法教案】相关文章:

分数乘法的教案11-03

分数乘法教案11-16

分数的乘法教案01-20

关于分数乘法教案11-25

分数乘法教案15篇01-17

分数乘法教案(15篇)02-01

分数乘法教案范文10篇01-07

分数乘法教案(通用15篇)02-02

分数乘法教案汇编15篇02-02

精选分数乘法教案汇编7篇07-19