面积的教案通用15篇
作为一位不辞辛劳的人民教师,就难以避免地要准备教案,教案是教学蓝图,可以有效提高教学效率。那么你有了解过教案吗?下面是小编精心整理的面积的教案,欢迎阅读,希望大家能够喜欢。
面积的教案1
教学内容:梯形面积的计算
教学目标:
1、使学生理解并掌握梯形面积的计算公式,并能正确计算出梯形面积。
2、通过梯形面积计算公式的推导过程,培养学生的实际操作能力和抽象概括能力,发展学生的空间观念。
3、结合教学,使学生受到唯物辩证观的启蒙教育,知道事物是相互联系的、变化的。在一定条件下可以转化。懂得用运动、联系的观点去观察、研究事物。
教学重点、难点和关键:
教学重点:梯形面积的计算公式。教学难点:梯形面积计算公式的推导过程。教学关键:通过操作实践,将梯形转化为平行四边形,探索梯形与拼成的平行四边形的关系。
教具、学具准备:
教师准备多媒体课件、学生备用梯形硬纸片。
教学过程:
一、复习引入:
1、复习:
同学们会计算哪些图形的面积?
计算下列图形的面积:多媒体出示。
2、引入:
屏幕出现梯形,问:这是什么图形,图上告诉了什么?它的面积是多少?同学们还不会计算梯形的面积。这节课,老师就和同学们一起来研究梯形面积的计算方法。
3、回忆旧知
我们在学习平行四边形面积时,是怎样推导出平行四边形面积公式的?(多媒体课件演示)
我们在学习三角形面积时,又是怎样推导出三角形面积计算公式的?(课件演示)
二、探索解决问题办法,并尝试转化
1、引导学生提出解决问题方案
我们在学习平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?
你准备用什么方法把梯形转化为我们学过的图形?
2、学生尝试转化
刚才同学提出了用割补的方法、用拼摆的方法。那么,怎样来割补呢?
学生上台演示后,教师指出:由于梯形的不规划,刚才的同学没有转化成功,其实是可以用割补的方法来转化的,请大家看一看:多媒体演示割补转化。
那么,用拼摆的方法呢,你准备怎样来拼?
学生上台演示。
3、学生操作、实施转化
学生以四人小组为单位,拼摆梯形。
请同学们告诉老师:你用两个完全一样的梯形拼成了一个什么图形?
谁来说一说,你是怎样拼的?多媒体课件演示。
三、观察图形,推导公式:
1、观察
同学们把梯形转化成我们学过的平行四边形。我们观察一下:拼成的平行四边形与原来的`梯形有什么关系?
它们的底、高和面积,大小怎样呢?小组讨论。
学生总结汇报后多媒体课件演示。
2、计算梯形面积
平行四边形的面积会算吗,这个梯形的面积应该怎样计算?同桌讨论计算方法。算式是什么?
算式中3加5的和求的是什么?乘以4得到什么?再除以2呢?为什么要除以2?
计算面积,学生口述,教师板书。
3、推导梯形面积公式
算式中的3、5、4分别表示梯形的什么,想一想梯形面积的计算方法是什么?
用字母表示梯形面积公式
阅读教材,加深理解
四、应用公式计算梯形面积
1、基本练习:
计算下面梯形面积
2、教学例题
出示例题并理解题意。
计算面积,一人板演,全班齐练。
3、判断题
4、抢答题
5、测量并计算
五、总结课堂
《梯形的面积》教学反思
教学创意及反思:《梯形的面积》这一课,在探索活动中学生借助知识的迁移,主动提出了“把梯形转化成学过的图形,并比较转化前后图形的面积”思考问题,主动思考,把一个新的图形面积的计算,转化为已学过的图形面积的计算,从而使问题得到解决。同时将解决生活实际问题转化成求梯形面积的数学问题,呈现多种转化的方法,能够丰富学生对图形的认识,加深对几何基本概念的理解,发展学生的空间观念,提高空间推理和解决问题的能力。
本节微课我努力在教学设计、教学行为语言、教学的展示上突出学习的双向性,避免纯粹的讲解,尝试做到“生”“屏”互动。具体有以下创新点:
一是教师放手让学生自己利用前面的学习经验,主动发现和提出数学问题,思考解决问题的方法,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的.联系,自主从不同的途径探索出梯形的面积计算方法。
二是教师依据学生的心理特点,创设了请学生帮老师解决如何比较车窗玻璃大小的问题以及课后的作业求堤坝横截面的面积,这样做不仅有效提出了数学问题,同时还激发了学生求知的愿望。做到了《标准》对于情境的创设“要联系学生的生活实际”的要求。使学生切实并切身地体会到了数学与生活的密切联系,真正体现了数学“于生活,回归于生活”的思想。
三是教师在微课的环节和问题设计中注重培养学生的猜测推理、操作探究、归纳总结及自主学习的能力,使微课起到吸引学生,指导学习,提升效果的作用。
介绍:在设计和制作中我努力做到“生”“屏”互动,产生双向学习的效应。能生动形象地展示梯形面积计算公式的探究过程,让学生充分地经历图形转化、想象的思考过程,积累活动经验,观察分析梯形转化前后图形面积及图形各要素之间的关系,推导出梯形面积的计算方法,深入理解梯形面积的计算公式。
应用情况:本节微课应用于义务教育小学数学北师大版五年级学生,本课内容为梯形的面积计算,讲课中教师能切合五年级学生年龄、学情特点、学科特点以及学段特点,应用生动形象的提问、对话、操作、演示等教学方法,让学生在独立思考,自主探究的过程中经历了猜测推理、操作探究、归纳总结的数学学习过程,在数学思想的形成和学习方法的提高上得到了培养,实现了新课标所提出的四基四能的要求。教学过程深入浅出,课堂氛围生动有趣。
面积的教案2
教学内容:
教科书第79~81页
教学目标:
1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
教学过程:
一、导入
1.观察主题图(有条件的地方可做成多媒体课件出示),让学生找一找图中有哪些学过的图形。
2.观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?
3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。
板书课题:平行四边形的面积
二、平行四边形面积计算
1.用数方格的方法计算面积。
(1)用多媒体或幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。
(2)同桌合作完成。
(3)汇报结果,可用投影展示学生填好的表格。
(4)观察表格的数据,你发现了什么?
通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
2.推导平行四边形面积计算公式。
(1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?
学生讨论,鼓励学生大胆发表意见。
(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。
学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
请学生演示剪拼的过程及结果。
教师用课件或教具演示剪—平移—拼的过程。(如教材第81页的图示)
(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的'长方形和原来的平行四边形,你发现了什么?
小组讨论。可以出示讨论题:
①拼出的长方形和原来的平行四边形比,面积变了没有?
②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?
小组汇报,教师归纳:
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,
这个长方形的宽与平行四边形的高相等,
因为 长方形的面积=长×宽,
所以 平行四边形的面积=底×高。
3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
三、巩固和应用
1.出示例1。读题并理解题意。
学生试做,交流作法和结果。
2.讨论:下面两个平行四边形的面积相等吗?为什么?
面积的教案3
教学目标:
1、让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。
2、让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。
3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。
教学重难点:
重点:圆的面积计算公式的推导和应用。
难点:圆的面积推导过程中,极限思想(化曲为直)的理解。
教学准备:
教具:多媒体课件、面积转化教具。
学具:书、计算器、16等份教具、作业纸。
教学过程:
一、创设情境、揭示课题
1、师:大家看,一匹马被拴在木桩上,它吃草的时候绷紧绳子绕了一圈。从图中,你知道了哪些信息?
(复习圆的相关特征)
师:那马最多能吃多大面积的草呢?
师:圆所围成的平面的大小就叫做圆的面积。
师:今天我们继续来研究圆的面积。(揭示课题)
2、师:你想研究它的哪些问题呢?(引导学生提出疑问)
?设计意图:在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面圆面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】
二、猜想验证、初步感知
1、实验验证
(1)师:猜一猜,圆的面积可能会和它的什么有关系?
师:你觉得圆的面积大约是正方形的几倍?
(2)师:对我们的估计需要进行?
生:验证。
师:用什么方法验证呢?
师:下面请大家先数数圆的面积是多少。
师:数起来感觉怎么样?有没有更简洁一点的方法?
(引导学生发现可以先数出个圆的方格数,再乘4就是圆的面积)
(让学生在图1中数一数,用计算器算一算,填写表格里的第1行。)
圆的半径
(cm)
圆的面积
(cm2)圆的面积
(cm2)正方形的面积
(cm2)
圆的面积大约是正方形面积的几倍
(精确到十分位)
(3)师:只用一个圆,还不足以验证猜想,作业纸上老师还准备了两个圆,同桌合作,分别用同样的方法把研究成果填写在表格中。(课件出示图2和图3)
(学生完成后交流汇报。)
师:仔细观察表中的数据,你有什么发现?
生:这三个圆的半径虽然不同,但是圆的面积都是它对应正方形面积的3倍多一些。
3、师:正方形面积可以用r2表示,那圆的面积和它半径平方之间有什么关系呢?
生:圆的面积是它半径平方的3倍多一些。
小结:我们经过猜测——数方格——验证,最终发现圆的面积是正方形面积也就是它半径平方的3倍多一些。
设计意图:从学生熟悉的数方格开始学习圆面积的计算,有利于学生从整体上把握平面图形面积计算的学习,有利于充分激活学生已有的关于平面图形面积计算的知识和经验,从而为进一步探索圆的面积公式作好准备。由数方格获得的初步结论对接下来的转化推导相互印证,使学生充分感受圆面积公式推导过程的合理性。
三、实验操作、推导公式
1、感受转化,渗透方法
(课件再次出示马吃草图)
师:知道了3倍多一些,就能准确算出这匹马最多可以吃多大面积的草了吗?
(引导学生发现,3倍多一些到底多多少还不清楚,需要继续研究能准确计算圆面积的方法。)
2、师:大家还记得平行四边形、三角形、梯形的面积计算公式分别是如何推导出来的吗?
(学生回忆后汇报,教师演示,激活转化思路)
3、第一轮探究——明确思路,体会转化
师:想想看,圆能不能转化成学过的图形?是否可以化曲为直呢?
生:剪圆。
师:怎么剪呢?沿着什么剪?
生:沿着直径或半径剪开。
(分别演示2等份、4等份、8等份,引导学生发现边越来越直,剪拼的图形越来越像平行四边形)
4、第二轮探究——明确方法,体验极限
师:刚才我们将圆分别剪成4等份、8等份再拼成新的图形是想干什么呀?
生:想把圆形转化成平行四边形。
师:那还能更像吗?
生:可以将圆片平均分成16份。
(引导学生把16、32等份的圆拼成近似的长方形,上台展示)
师:从哪儿可以看出这两幅图更像平行四边形了?
生:边更直了。
师:是什么方法使得边越来越直了?
生:平均分的份数越来越多。
(引导学生体验把圆平均分成64份、128份……剪拼后的图形越来越接近长方形)
师:如果我们平均分的份数足够多,就化曲为直,最后拼成的图形——就成长方形了。
设计意图:通过这一环节,渗透一种重要的数学思想——转化,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧的知识解决新的问题,从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我们可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识,为新知识的“再创造”做好知识的准备。学生展开想象的翅膀,从而得出等分的份数愈多,拼成的图形就越像平行四边形。在想象的过程中蕴含了另一个重要数学思想的渗透——极限思想。
(2)师:我们把圆转化成了长方形,什么变了,什么没变?
生:形状变了,面积大小没有变。
师:这样就把圆的面积转化成了?
生:长方形的面积。
师:要求圆的面积,只要求出?
生:长方形的`面积。
5、第3轮探究——深化思维,推导公式
师:仔细观察剪拼成的长方形,看看它与原来的圆之间有什么联系?将发现填写在作业纸第2题中,然后小组内交流一下。
(小组讨论,发现:长方形的宽等于圆的半径,长方形的长等于圆周长的一半。)
师:长方形的宽和圆的半径相等,这里的宽也可以用r表示。那么,长方形的长又可以怎么表示呢?(重点引导学生理解长:c÷2=2πr÷2=πr)
(通过长方形面积计算方法,引出圆的面积计算方法)
师:圆的面积是它半径平方的3倍多一些,准确地说是它半径平方的多少倍?
生:π倍。
师:有了这样的一个公式,知道圆的什么,就可以计算圆的面积了。
生:半径。
5、做“练一练”
完成作业纸第3题,交流反馈。
6、(课件再次出示牛吃草图)
师:这匹马最多能吃多大面积的草,现在会求了吗?
设计意图:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去探索新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和演算推理能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。
四、解决问题、拓展应用
1、师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。
(课件出示例9)
分析题意后学生独立完成书本第105页例9。
(组织交流,评价反馈)
2、完成作业纸第4题
师:接着看,默读题目,完成作业纸第3题。
(学生独立完成,交流反馈)
五、全课小结、回顾反思
师:你们对于圆面积的疑问现在解开了吗?又有了哪些新的收获?
师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!
设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。
圆的面积教学反思
本节课是在学生掌握了面积的含义及长方形、正方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上进行教学的。
成功之处:
1.以数学思想为引领,探索圆的面积计算公式的推导。学生对于把圆的面积转化为已学过图形的面积并不陌生,通过以前相关知识的学习,学生很自然想到利用转化思想把圆的面积转化为长方形、平行四边形的面积来推导计算圆的面积。在教学中,我首先通过出示学过的图形长方形、正方形、三角形、平行四边形、梯形,让学生回顾这些图形的面积计算,从而为教学圆的面积做好铺垫。
2.利用多媒体的优势,与学生的实际操作相结合,使学生不仅知道圆的面积推导过程,还在学习中再一次温习转化思想,掌握解决问题的策略。在教学中,通过学生的操作,与多媒体的动态演示,使学生清楚的发现圆的面积与近似长方形面积之间的关系:近似长方形的长相当于圆周长的一半,宽相当于圆的半径,由此推导出圆的面积是:s=∏ 。
不足之处:
学生由于事先在课前已把课本中的附页圆等分剪下来,对于把圆的面积转化成长方形、平行四边形有了一定的思维限制,学生是不是只是单纯的操作,而忽略了思维的进一步深入,还有待研究。
再教设计:
尽量放手给予学生最大的思考时间和空间,让学生在思索、质疑中不断建构知识的来龙去脉,习题要精选,注意变化的形式。
面积的教案4
教材分析
圆的面积是在初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,因为以后学习圆柱、圆锥的知识打下基础。学生已有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆现象、勇于实践。在操作中将圆转化为已学过的平面图形,从中找到圆的面积与半径、直径的关系。
学情分析
学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感体验和感受数学的价值。
教学目标
1、知道圆的面积的含义,理解和掌握圆的面积的`计算公式,能够正确的计算圆的面积。
2、理解圆的面积公式的推导过程,理解转化的数学思想。
3、根据圆的半径或者圆的直径来计算圆的面积,解决简单的有关圆的面积计算的实际问题。
教学重点和难点
重点:使学生知道圆的面积的含义,理解和掌握圆面积的计算公式,并能正确计算圆的面积。
难点:理解圆的面积公式的推导过程,掌握转化的数学思想。
面积的教案5
教学目标:
1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
教学重点:
1、掌握平行四边形的面积计算公式。
2、会计算平行四边形的面积。
教学难点:理解平行四边形面积公式的推导过程.
教具准备:课件,平行四边形的纸片。
学具准备:学习卡,每个学生准备一个平行四边形。
教学过程:
一、导入
1.观察主题图(课件出示),让学生找一找图中有哪些学过的图形。
2.观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?
3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。
板书课题:平行四边形的面积
二、平行四边形面积计算
1.用数方格的方法计算面积。
(1)用多媒体出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中。
(2)独立完成。
(3)汇报结果。
(4)观察表格的数据,你发现了什么?
通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
2.推导平行四边形面积计算公式。
(1)引导:如果不用数方格,那能不能计算出平行四边形的面积呢?
学生讨论,鼓励学生大胆发表意见。
(2)归纳学生意见,提出:是不是这样计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
请学生演示剪拼的过程及结果。
教师用课件或教具演示剪—平移—拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?(小组讨论)
小组汇报,教师归纳:
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,
这个长方形的宽与平行四边形的高相等,
因为 长方形的面积=长×宽,
所以 平行四边形的面积=底×高。
3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
4.出示例1。读题并理解题意。
三、巩固和应用
1、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等( )
(2)平行四边形底越长,它的面积就越大( )
2、计算。
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业:练习十五第1、2题。
六、板书设计
平行四边形面积的计算
长方形的面积=长×宽
平行四边形的面积=底×高
S=ah
《平行四边形的面积》教学反思
本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行平行四边形的面积的计算的,我能根据学生已有的知识水平和认知规律进行教学。本节课的教学目标是学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积,并且通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化、剪切和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。重、难点是平行四边形面积计算公式的推导,使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。
一、重在每个孩子都参与
本节课教学我充分让每个学生都主动参与学习。首先,通过财主分地的故事导入,让学生大胆猜测:长方形的地和平行四边形的地哪块大?然后让他们各自说明理由,可以用不同的方法来证实自己的观点。有的孩子提出用数方格的方法,还有的孩子用剪切和平移的方法,然后再进行逐步展开。全班孩子在数格子的'时候会发现问题,平行四边形的格子没有那么好数,不满1格的都只能算半格,虽然数出的答案一样,但是不太精确,而且孩子们也意识到,在现实生活中,比较地的大小是不可能用数格子的方法来进行的。所以我们着重讲转换的方法。让每个学生自己动手剪拼,转化成已经学过的图形。引导学生参与学习全过程,去主动探求知识,强化学生参与意识,引导学生运用各种不同的方法,通过割补、平移把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。
二、渗透“转化”思想,让所积累的经验为新知服务
“ 转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生只是拼出两种,另外一种情况(沿中间高剪开)学生没拼出来,我只好自己演示出来,让学生了解,拓宽空间思维想象。接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形到长方形的转化过程,把三种方法放在一起,让孩子们讨论比较,转化后的图形和原图形有什么样的关系,并以小组为单位组织语言,组长汇报。这样就突出了重点,化解了难点。通过本节课的学习让孩子们了解到转化的思想很重要,在以后推导三角形、梯形面积的计算公式时可以提供方法迁移。
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着教师不敢完全放手的现象,课堂上有效的评价语言在本节课中也体现不够完善等等。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩!
面积的教案6
【教学内容】
九年义务教育六年制小学教科书(人教版)《数学》第九册。
【教材分析】
三角形面积是在学生掌握了三角形的特征以及长方形、正方形的面积计算的基础上进行学习的,其公式的推导方法与平行四边形面积的计算公式推导方法有相似之处。都是将图形转化成己经会计算面积的图形。探索研究新图形与己学图形之间的联系。从而找出面积的计算方法。因此。本节课注重对学生进行迁移、转化的数学思想方法的渗透。
【教学重点】:
三角形的面积计算公式的推导。
【教学难点】:
在转化中发现内在联系。
【学情分析】
由于学生对长方形、正方形、平行四边形的面积计算方法已掌握得较好。尤其通过对平行四边形面积公式的推导过程。学生己初步了解转化的数学思想方法。由此。对三角形面积的计算方法的探索得到了启示。但也可能有部分学生会遇到一定的困难,比如用什么方法把三角形转化成学过的图形。怎样转化、怎样推导出三角形面积的计算方法。
【教学目标】
(一)知识与技能目标1.掌握三角形面积计算公式。能正确计算三角形的面积。
2.能灵活运用公式解决简单的实际问题。
3.在探索学习过程中。培养学生动手实践自主学习的能力。
(二)过程与方法目标让学生经历利用数方格的方法,求出三角形面积的过程。并产生猜想。然后分组合作。经历探索三角形面积计算方法的过程。获得转化数学思想方法的初步经验。
(三)情感态度目标在探索学习活动中。培养学生探索意识、合作意识、创新意识。体会数学问题的探索性。并获得积极的、成功的情感体验。
【教学准备】
1.教师:投影仪、投影片3张。
2.学生:三角形面积计算公式操作材料1套、小剪刀1把。
【教学过程】
一、创设情境,引入新知
1.同学们。想知道老师今天给你们带来了什么吗?(投影出示下面三个图形)
这些图形的面积分别是多少(学生口答。人家判断)?
2.谁还记得平行四边形面积计算公式是怎样推导出来的吗(学生回答。并用老师准备的教具演示割拼的转化过程)?
在学生回答的基础上。板书:转化一~找关系一推导3.今天老师还给大家带来了一样礼物。想知道吗(出示红领巾)?
要想知道做这样的一条红领巾需用多少布。实际上是求这条红领巾的什么?(根据学生的回答)师问:三角形的面积怎样计算呢?这节课我们一起研究、探索这个问题(板书:三角形而积的计算)。
【设计意图:通过问题情境的创设。激发学生探索新知识的欲望。使学生明确探索的目标和方向。]
二、自主探索。合作交流
(一)用数方格的方法求三角形的面积(投影出示第69贞上面的要求和三个图形)看谁最快数出三角形的面积。
下面有3个三角形。图中每个方格代表1平方厘米。请你用数方格的方法。求出它们的面积各是多少平方厘米(不满一格的,都按半格计算)?
人家猜想一下。三角形的面积可能同它的什么有关系呢?
【设计意图】:通过数方格求三角形的面积。然后根据底和高的数据计算。鼓励学生大胆猜想出三角形的面积可能是底与高的乘积的一半。为下面实验、验证提出了探索的目标。
(二)谈话启思刚才。我们只是一种猜想。猜想是不是正确呢?我们必须通过探索实验来进行验证。能不能从平行四边形面积计算公式推导的方法中得到启示呢?现在利用你们每组中的学具。进行操作实验、合作研究。然后向全班同学展示你组的研究成果好吗?
(三)操作探索—实验验证1.小组合作。探索实验(师参与到各组进行研究)。
2.小组汇报、交流展示。
(学生可能会展示出以下几种拼、剪、割补图形的情况。)
用完全一样的直角、锐角或钝角三角形拼成一个平行四边形
3.梳理结论。
以上同学们通过拼、剪、割补。不仅推导出三角形的面积计算公式。还运用多种方法进行了验证。请大家说一说三角形的面积计算公式。
板书:三角形的面积=底X高令2如果用S表示面积。a, h分别表示底和高。用字母怎样表示其面积计算公式?
板书:S=ah=2【设计意图:首先为学生提供了可探索的学习材料。各组自由选择。体现探索的开放性。通过各小组的研讨。合作找出拼剪、割补等转化图形的方法。然后得出结论。目的是通过公式的推导。使学生都能亲身经历探索的过程、发现的过程、推理的过程、个人独立思考的过程、小组合作研究的过程、交流学习的过程。达到对公式的来源、推理的深刻理解。最后结论:梳理出三角形面积计算的公式及字母公式。体现“以学生为本”这一理念。】
三、实践运用,拓展创新
利用公式验证方格图中三角形的面积。
拿出红领巾四人一组计算做一条红领巾大约用多少布?
尝试解答例题。
(投影出示)一种零件有一面是三角形。三角形的底是5厘米。高是4厘米。这个三角形的面积是多少平方厘米(学生独立解答,教师巡视点拨)?
4.挑战自己。
①下图中哪个三角形的面积与涂颜色的`三角形的面积相等?
为什么?
②你能再画一个与涂颜色的三角形面积相等的三角形吗?你认为可以画多少个这样的三角形?
【设计意图】:放手让学生尝试实践。使学生在尝试成功中获取积极的情感体验。计算红领巾要用多大的布,目的是培养学生的自主实践能力。密切数学与现实生活的联系。判断图中三角形的面积是否相等。主要是训练学生灵活运用知识并将所学知识加以拓展的能力。
四、评价体验,总结延伸
1.通过这节课学习。你有什么收获?
2.做一条红领巾用多大的布你们知道了,如果田间有一块三角形的麦田。你能测录计算它的面积吗?谈谈你的方法。
3.课后实践:同学合作。测录一个任意三角形的实物,计算出三角形的而积。
【设计意图】:让学生说最想说的话和最想提的问题是什么,是对学生进一步探索的鼓励。设计三角形的面积计算由小到大延仲,课内测量到课外延仲。目的是让学生带着所学的知识走向生活,走向社会。走向自然。解决生活中简单的实际问题。
【教学反思】
本节课以“猜想一验证一结论一实践”的教学模式进行教学设计。力求体现“以学生发展为本”这一教育的共同理念。在获取知识时大胆放手。让学生主动地进行观察、实验、猜想、验证、交流等数学活动,目的是培养学生的创新意识和实践能力,使学生体会到自己就是学习活动中的探究者、发现者。
通过本节课的教学。有以下几点体会:
1.提供有利于探索的学习素材。本课设计探求三角形面积的计算,对于学生己有的认知结构来说是适当的。实践证明。学生能够在原有的知识基础上。利用学习材料去探究和发现三角形面积的计算方法。
2.重视小组合作学习。本课以小组学习的形式。使学生经历了合作、交流、探索的过程。感受到合作探究解决问题的乐趣和与他人合作的良好情感体验。
3.在评价时,要坚持“不求人人成功。只求人人进步”的思想。把评价的重心放在合作上。把学习的着力点定位在争取不断的进步与提高上。只要有所进步。就能体验到成功。
面积的教案7
教学目标
1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
2.能正确地计算圆柱的表面积。
3会解决简单的实际问题。
4.初步培养学生抽象的逻辑思维能力。
教学重点
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程
一复习旧知。
1计算下面圆柱的侧面积。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
2求出下面长方体、正方体的表面积。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的.侧面积+圆柱的两个底面积=圆柱的表面积)
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三新课教学。
1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)
(2)底面积:3.14×2×2=12.56(平方分米)
(3)表面积:56.52+12.56=81.64(平方分米)
答:它的表面积是81.64平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五拓展练习
1教师发给学生教具,学生分组进行数据测量。
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六巩固练习。
1计算下面图形的表面积(单位:厘米)(略)
2计算下面各圆柱的表面积。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)
面积的教案8
教学内容:
教科书第123—124页,“做一做”中的题目和练习二十八的第1—5题。
教学目的:
使学生初步理解长方形面积的计算方法,会运用公式正确地计算长方形的面积,培养学生的抽象概括能力。
教具、学具准备:
师准备卷尺,生准备一张长5厘米,宽3厘米的长方形,20个1平方厘米的正方形。
教学过程:
一、复习。
1、让学生说一说面积的含义,并举例说明。
2、让学生说一说学过的面积单位,并比划一下它们的大小。
二、新课。
1、教学长方形面积的计算。
让生拿出准备好的长5厘米,宽3厘米的长方形,用1平方厘米的正方形测量一下它的面积。生摆完后问:一共摆了多少个1平方厘米的正方形?这个长方形的面积是多少平方厘米?沿长边摆几个正方形?沿短边摆几个正方形?
根据生的`回答,是在黑板上画出图形(画长方形时用1分米表示1厘米):
师问:这个长方形的长是几厘米?沿长边一排摆几个1平方厘米的正方形?是几平方厘米?每排正方形的个数与长方形的长有什么关系?这个长方形的宽是几厘米?沿宽边摆里几个1平方厘米的正方形?排数与长方形的宽有什么关系?一共摆了多少个正方形?你是怎样计算的?
生答,师小结并板书:5×3=15
长×宽=面积
2、练习。“做一做”的题目,让生先量出它的长和宽,再计算它的面积。
三、课堂练习。
1、做练习二十八的第1题。
先让学生说一说长方形的长和宽是多少厘米,再计算。
2、做练习二十八的第2题。
生独立完成,集体订正。
3、做练习二十八的第3题。
先让一生与老师共同测量出黑板的长和宽,再让生计算。
四、作业
练习二十八的第4、5题。
面积的教案9
教学目标
1、巩固复习长方形、正方形面积的计算。
2、长方形、正方形面积的对比练习。
教学重点
能运用所学知识解决现实生活中的实际问题。
教学难点
提高学生灵活运用知识的能力,进行题目的变式练习和引导学生发现规律的探究练习
教具准备
准备一张边长是10厘米的正方形和一块手帕。
教学过程
一、基础练习
1、口算下列各题。
4×9060×3300×94×5020×46×500
22×1315×1115×1770×437×58×53
2、请同学们说一说,长方形和正方形的周长、面积公式,教师板书。
3、计算下面各图形的面积。(单位:厘米)
由学生说明每个图形的含义,再在练习本上独立解答。教师巡视指导,并规范书写格式。
4、先估算黑板的面积,再测量它的长和宽,并计算面积。
学生先估算黑板的面积,然后派两个代表到前面来测量长和宽。全体同学计算它的面积,再看一看,计算结果和估算结果相差多少,从而丰富自己估算的经验。
5、学生拿出自己准备的手帕先估算面积,再测量它的边长,算出自己手帕的面积。
引导学生通过基础练习加深对面积公式的理解清楚地知道求长方形面积必须知道长和宽两个条件,求正方形面积只知道
正方形的边长就可以了。
二、探究新知
1、篮球场的长是28米,宽是15米。它的面积是多少平方米?半场是多少平方米?
学生解题,并口头分析,独立完成,集体订正。
2、李小林要从下面的长方形纸上剪下一个最大的正方形。剩下的部分是什么图形?它的面积是多少平方厘米?
学生读题并分析:从长方形中所剪下的一个最大的正方形,要以长方形的宽为张方形的边长。
指导学生在教材上画出要剪下的正方形,再按要求回答下列问题。
6×10=60(平方厘米)
6×6=36(平方厘米)
60-36=24(平方厘米)
答:剩下的部分是长方形,它的面积是24平方米厘米。
三、对比练习
1、花园里有一个正方形的荷花池,它的周长是64米,面积是多少平方米?
学生读题,教师指导学生思考:求正方形面积需知道什么条件?边长与周长又有什么关系?
提问:题中给了正方形荷花池的周长,怎么求边长?
指导学生在练习本上独立完成,教师巡视指导,集体订正。
64÷4=16(米)16×16=256(平方米)
答:面积是256平方米。
2、在方格纸上画出面积是16平方厘米的'长方形,你能画几个?算出它们的周长,填入表中。
长(厘米)宽(厘米)面积(平方厘米)周长(厘米)
1611634
821620
441616
通过画图填表格引导学生发现:
(1)有三种情况。(只要想哪两个数相乘是16就可以了)
(2)面积一定的长方形长和宽越接近,周长越短,当长和宽相等成为正方形时,周长最短。
教师说明:这一结论随着我们年龄的增长,知识的增多将会得到更充分的证明。
3、从一张边长为10厘米的正方形纸上,剪去一个长6厘米、宽4厘米的长方形。小明想到三种方法(教材第69页第10题的图)剩下部分的面积是多少?周长呢?
引导学生看书中的图,讨论这三幅图的面积和周长的变化。
(1)三幅图剩下的面积相等,都是76平方厘米。
(2)第一幅图的周长和原正方形的周长相等仍是40厘米;第二幅图的周长比原正方形多了两个4厘米,是48厘米;第三幅图周长比原正方形多了两个6厘米,是52厘米。
让学生自己设计一个图,再计算剩下部分的面积和周长。
四、课堂作业新设计
1、计算下面各题的周长和面积。
(1)长23厘米,宽17厘米,求周长和面积
(2)正方形边长=12分米,求周长和面积。
(3)正方形周长是36米,求边长和面积。
2、张大伯要在一块边长为4米的正方形菜地的四周围上一圈篱笆,要用多长的篱笆?菜地能种多大面积的菜?
五、思维训练
1、一块长方形绿地,宽24米,长是宽的2倍,这块绿地的面积是多少?如果每平方米种4棵松树,绿化队应该准备多少棵松树就够了?
2、一个长方形,它的宽增加2厘米、面积增加8平方厘米,正好变成一个正方形,原来的长方形面积是多少?
面积的教案10
教学内容:
教科书P84~P85的内容,三角形的面积。
教学目标:
1、使学生理解三角形面积公式的推导过程,并能正确的计算三角形的面积。
2、培养学生分析、推理的能力和实际操作的能力。
3、通过三角形面积计算公式的推导,引导学生运用转化的思考方法探索规律,培养学生思维的灵活性,发展学生的空间观念。
4、培养学生学习数学的情感和兴趣,懂得运用数学知识解决生活中的问题。
教学重点:
用转化的方法探索三角形的面积公式,能正确计算三角形的面积。
教学难点:
理解三角形面积公式的推导过程和公式的含义,根据计算公式灵活解决实际问题。教学关键:让学生经历操作、合作交流、归纳发现和抽象公式的过程。
教具准备:
红领巾、信封若干(内有三角形)、实验报告表
教学过程:
一、情境导入,揭示课题。
师:在我们美丽的校园里,有块平行四边形的空地,它的面积怎样计算的?(小黑板出示校园图)师:你还记得平行四边形面积的计算方法怎样推导的吗?(生:是通过把平行四边形转化成长方形推导出来的;老师根据学生回答板书:转化)师:现在园丁叔叔要把它沿着对角线斜着平分成2块,一块种菊花,一块种牵牛花,请看,每块花地是什么形的?(出示分法:分出2个三角形)师:每块花地的面积是多少,该如何计算?大家想知道吗?(生:想)好,咱们就一起来研究三角形的面积计算方法。(老师出示课题:三角形的面积)
二、操作“转化”,推导公式。
1、寻找思路:师:我们能不能也学学推导平行四边形面积的方法,把三角形也转化成已学过的图形来推导呢?
师:想一想,将三角形转化成学过的什么图形?
2、操作探索:(1)提出操作和探究要求。
师:请小组合作拿出准备好的学具袋(装着三角形的'信封袋),在里面选择你认为合适的三角形拼一拼,说说你发现什么,并根据你们的结论,一起合作填好下表(每个小组1张表,并投影出示)实验记录表
讨论探索:三角形与拼成的图形之间的关系
A、两个完全一样的()三角形拼成一个();
B、三角形的底与拼成的()形的底( );
C、三角形的高与拼成的()形的高();
D、原来三角形的面积等于拼成的()形面积的()。
(2)学生以小组为单位进行操作和讨论。
教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学困生。
(3)展示学生的剪拼过程,交流汇报。
师:哪个小组想来展示、汇报你们的成果?
让小组组长汇报。(学生一边拿三角形在黑板演示,一边根据所填的表格说,演示完毕把作品贴在黑板上。)
每一组汇报完演示:用旋转平移的方法将三角形转化成各种已学过的图形。(两锐角三角形)(两钝角三角形)(两直角三角形)(两等腰直角三角形)
根据学生的回答和演示得出:两个完全一样的三角形能拼成一个平行四边形,三角形的底和高分别与平行四边形的底和高相等,三角形的面积是平行四边形面积的一半。
3.归纳公式:师:你能根据我们的结论推导出三角形的面积计算方法吗?请把你的推导填在书上84页的这里。学生填完后,评定。
师:说说你推导的理由是什么?(如学生不能把关键问题回答出来,应适当给予引导)
让三、四位同学分别大胆地推导说理,接着让同学们评价自己的猜测和证明。老师根据学生的汇报,小结三角形面积公式的推导过程,并完成板书:
因为:两个完全一样的三角形可以拼成一个平行四边形,平行四边形的面积=底×高。所以:一个三角形的面积=底×高÷ 2
师:如果用S表示三角形的面积,用α和h分别表示三角形的底和高,那么你能用字母写出三角形的面积公式吗?
结合学生回答,教师板书:S=ah÷2
4、尝试计算:师:现在你会解决园丁叔叔的问题吗?
学生列式计算,反馈、点评。
三、解决问题,体现数学价值。 1.解决问题,学习例2。出示85页例2:学生独立完成,集体订正。
师:你认为计算三角形的面积,什么地方容易出错?(强调“÷2”这一关键环节)
2、数学常识,阅读题解:师:其实早在20xx年前,我国伟大的劳动人民就开始会用这个公式来计算三角形土地的面积了。请同学们课后把85页的“你知道吗”读一读。
3.实践运用,P86第4题:要在公路中间的一块三角形空地(见下图)上种草坪。1㎡草坪的价格是12元。种这片草坪需要多少元?学生独立完成,然后汇报、评讲。
四、联系生活,综合运用,适当拓展。
1、做一做练习。
2、判断:①两个三角形一定能拼成一个平行四边形。()
②三角形的底和高都是5分米,它的面积是25平方分米。()
③求三角形的高可以h=s×2÷a()
五、总观全课,体验提高。
师:这节课探究了什么?是怎样探究的呢?(渗透数学方法)
引导学生根据板书,回顾这节课学习内容和探究思路。
师:对!今天我们分小组通过动手操作,相互讨论、交流,用摆拼的方法将三角形转化成学过的图形推导出了三角形面积的计算公式,你还想研究其他的推导方法吗?请回家想想,下节课告诉老师。
六、作业设计:
练习十六第1、3小题。
七、板书设计:
(略)
面积的教案11
教学目标
1、使学生知道常用的土地面积单位——公顷,知道1公顷有多大,1公顷与平方米之间的关系。
2、培养学生的空间观念与动手操作能力。
教学重点
1公顷有多大的空间观念。
教学难点
平方米与公顷之间的换算。
教具准备
标杆与绳子。
教学过程
一、复习准备。
1、什么叫面积?常用的面积单位有哪些?(物体的表面或平面图形的大小,叫做它们的面积。常用的面积单位有平方米、平方分米、平方厘米。)
2、什么是1平方米?什么是1平方分米?什么是1平方厘米?(边长1米的正方形,它的面积是1平方米;边长1分米的正方形,它的面积是1平方分米;边长1厘米的正方形,它的.面积是1平方厘米。)
3、1平方米=()平方分米
3平方米5平方分米=()平方分米
1平方分米=()平方厘米
1500平方厘米=()平方分米
二、学习新课。
1、谈话引入:
计算一般物体的面积有平方米、平方分米、平方厘米。今天我们要学习计算土地的面积单位———公顷。(板书课题:土地面积单位———公顷)
2、公顷的认识。
(1)教师谈话:计算土地的面积有平方米和公顷。1平方米有多大,大家都知道了,边长1米的正方形,它的面积是1平方米。那么1公顷有多大呢?咱们去实际测量一下。
(2)实际测量。
带领学生到操场,先量出边长1米的正方形土地,用标杆和绳子围起来,说明这么大的土地是1平方米。
再量出边长是10米的正方形土地,用标杆和绳子围起来,提问学生这块土地有多少平方米?让学生在这块土地四周看一看,这么大是100平方米。然后教师说明100个100平方米这么大的土地是1公顷,让学生闭眼想一想1公顷有多大。
(3)公顷与平方米之间的关系。
回到教室,教师提问,唤起学生的想象:
①刚才在操场第一次围出的正方形有多大?它们的边长是多少?
②第二次围出的正方形边长是多少?面积有多大?(教师板书:100平方米)
③1公顷有几个这样的正方形土地?(100个)
④1公顷有多少平方米?你是怎样推想出来的?(100×100=10000)
教师板书:1公顷=10000平方米。
教师说明:教室的面积一般有50平方米,200个教室面积大约是1公顷。
1公顷=10000平方米,那么2公顷等于多少平方米?
30000平方米=()公顷。
(4)练一练。
4公顷=()平方米50000平方米=()公顷
3、教学例题。
(1)教师说明:丈量土地时,一般用米做长度单位来丈量,算出面积是多少平方米之后,再换算成公顷。
(2)出示例题:一个长方形果园,长250米,宽120米,这个果园有多少公顷?
提问:
①长方形面积怎样求?
②怎样由平方米换算成公顷?
由学生列式计算。
(3)练一练。
一块边长是400米的正方形麦地,有多少公顷?
全体学生在本上做,由一名学生在投影片上做。订正时,提问学生怎样想的?已知正方形边长,可以求出什么?怎样换算成公顷?
三、巩固反馈。
1、课内练习。
(1)北京的天安门广场是世界上最大的广场,面积约40公顷,约合()平方米。
(2)北京故宫是世界上最大的宫殿,占地面积720000平方米,合()公顷。
2、课后练习。
(1)量学校操场的长和宽,计算它的面积,看够不够1公顷。
(2)7公顷=()平方米60000平方米=()公顷
(3)一个飞机场新建一条跑道,长250米,宽80米。占地多少公顷?
板书设计
土地面积单位——公顷
例。一个长方形果园,长250米,宽120米,这个果园有多少公顷?
250×120=30000(平方米)
30000平方米=3公顷
答:这个果园有3公顷。
土地面积单位有:平方米、公顷
1公顷=10000平方米
教案点评:
本节课是在学生已经掌握了一些长方形、正方形的知识以及它们的面积计算方法的基础上,学习土地面积单位——公顷。因此,新课前复习面积的概念、常用的面积单位以及它们之间的进率。
本节课的主要任务是使学生对1公顷有多大有个具体观念,这样才能进行正确的推算。因此,通过实际活动,实地观察、具体推算,帮助学生建立具体观念。实际观察分三步:先观察1平方米有多大;再观察100平方米有多大;再想象100个这样大的正方形土地就是1公顷。这样由小到大便于学生建立具体观念。
回到教室后,通过提问,唤起学生对刚才在操场实际操作的想象,推算出1公顷=10000平方米。这样教室内外的结合,一方面可以加深实际观察的感性认识,另一方面利用教室内学生思想容易集中,推算出公顷和平方米之间的关系,容易记住。
新课中通过例题说明公顷在实际中应用,计算出面积是多少平方米后,再换算成公顷。
在巩固练习中通过计算天安门广场和故宫的占地面积,向学生进行爱国主义教育。
面积的教案12
教学内容:
平行四边形的面积的计算
教学目标:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。
教学重点:
掌握平行四边的面积计算公式,并能正确运用。
教学难点:
把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
教具准备:
课件、平行四边形纸片、剪刀、直尺、三角板等。
学具准备:
2块平行四边形彩色纸片、三角板、直尺、剪??
教学过程:
师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。)
一、情境创设,揭示课题
1、创设故事情境
同学们,喜欢喜羊羊的动画片吗?据说羊村的牧草越来越少,村长决定把草地分给各个羊自已管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,它们认为自已的草地更少,争了起来。同学们想帮它们解决这个问题吗?你们准备怎样解决呢?
2、复习旧知,揭示课题
(1)复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长×宽)
(2)师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来研究平行四边形面积的计算方法。
二、自主探究,操作交流
1、大胆猜想
师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?
师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?
(两个图形的面积相等,都是18平方米……) (知识点)
师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的面积可能与它的什么有关?
(师出示一个平行四边形纸板,生看图猜测。)
生汇报猜测结果,师随机板书。
师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?
2、操作验证
提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的
(师参与到小组活动中,巡视指导。)
3、汇报交流
师:你是怎样做的呢?谁愿意上来演示并说一说呢?
(学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)
师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。
师:请同学们观察一下,哪种图形的面积我们懂得计算呢?
生:长方形。
师:怎样剪才能拼成长方形呢?
师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!
生再次操作。
4、发现方法
师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。
(电脑显示思考题)
小组讨论交流。
(1)平行四边形转化成长方形,面积变了吗?
(2)方形后的长和宽分别与平行四边形的底和高有什么关系?
(3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?
实物图片展示拼剪过程同时回答上面的讨论题。
学生一边说教师一边板书:长方形面积=长×宽
平行四边形面积=底×高(知识点)(能力点)
5、回顾公式推导过程
(1)结合课件演示各部分间的相等关系。
(2)指名说说平行四边形面积公式是怎么样推导出来的?
6、学习用字母表示公式。
师:如果平行四边形式形面积用字母s表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?(指名说说,师板书:s=ah)
7、记忆公式
闭上眼睛记记公式。
如果要求平行四边形的面积,必需要知道哪些条件呢?
8、尝试运用
师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?请同学们用面积公式帮喜羊羊算一算平行四边形草地的面积,看计算结果与数方格方法求得的面积结果是不是一样?
(出示喜羊羊的草地图)(说明格式要求)学生独立完成。
三、深化运用,加深理解
通过计算,它们两人的草地面积相等吗?(相等)它们终于消除了误会,破涕为笑,齐声说:“计算平行四边形面积原来这么简单,我们也会了。”
1、算出下列平行四边形的面积(考查点)
课件出示图形
(羊村长看到小羊们的进步很高兴,说:“再出几个选择题考考你们吧。”)
2、选一选。(题目见课件) (考查点、能力点)
(强调:平行四边形的面积=底×底边对应的高)
你有什么结论?(等底等高的两个平行四边形面积相等。)
3、(羊村长说:我老了,你们能帮我算需要多少棵白菜秧苗吗?)
(考查点、能力点)
有一块地近似平行四边形,底是15米,高是10米。这块地的面积约是多少平方米?如果每平方米种8棵白菜,这块地能种多少棵白菜?
四、解决问题,应用拓展
1、小小设计师
羊村小学教学楼前要建造一个面积是24平方米的平行四边形花坛,请你帮它们设计一下(要求它的底和高均为整米数),可以有几种方案?
2、喜羊羊准备在草地的四周围上篱笆,你能帮它算算篱笆长多少米吗?
五、总结全课,提高认识
这节课我们学习了什么知识?是怎么来学会这些知识的?
小学五年级数学《平行四边形的面积》优秀教案范本二
教学目标:
1.通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2.通过电子白板的操作、探究、对边、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3.运用猜测、验证的方法,使学生积极的情感体验。发展学时自主探索、合作交流的能力,感受数学知识的价值。
教学重点:
探索并掌握平行四边形的面积计算方法。
教学难点:
理解平行四边形面积计算公式的推导过程。
教学工具:
电子白板课件、平行四边形模型、剪刀、初步探究学习卡
教学过程:
一、课前引入、渗透转化。
1.课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?
2.播放制作七巧板的视频。
3.出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。
二、创设情境,揭示课题。
1.电子白板导出两个花坛,比一比,哪个大?
2.揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。
三、对手操作,探究方法。
1.利用数方格,初步探究
2.出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的铺垫。导出“初步探究学习卡”
四、白板演示,验证猜想。
1.探索把一个平行四边形转化成已学习过的图形。
2.观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。
3.平行四边形的面积=底×高
4.引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。
五、巩固练习,加深理解。
1.课件出示例1
2.课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件
六、课堂小结,反思回顾。
回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的?
小学五年级数学《平行四边形的面积》优秀教案范本三
教学目标:
1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积
2、通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3、对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:
理解公式并正确计算平行四边形的面积.
教学难点:
理解平行四边形面积公式的推导过程.
学具准备:
每个学生准备一个平行四边形。
教学过程:
一、导入新课。
1、请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?
2、好,下面谁来说一说你找到了哪些学过的图形?
3、请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就平行四边形面积计算。
二、民主导学
(一)、数方格法
用展示台出示方格图
1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
3、请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的'计算平行四边形面积的方法。
(三)割补法
1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
5、引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)
6、教学用字母表示平行四边形的面积公式。
板书:s=a×h
说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成s=a·h,或者s=ah。
(6)完成第81页中间的“填空”。
7、验证公式
学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
三、检测导结
1、学生自学例1后,教师根据学生提出的问题讲解。
2、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()
(2)平行四边形底越长,它的面积就越大()
3、做书上82页2题。
4、小结
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
5、作业
练习十五第1题。
附:板书设计
平行四边形面积的计算
长方形的面积=长×宽
平行四边形的面积=底×高
s=a×h
s=a·h或s=ah
面积的教案13
一、教学目标:
1、理解和掌握平行四边形的面积计算公式。
2、会计算平行四边形的面积。
二、教学重点:
理解公式并正确计算平行四边形的面积。
三、教学难点:
理解平行四边形的面积公式的推导过程。
四、学具准备:平行四边形纸
五、教学过程:
(一)、板书课题,揭示目标
同学们请看大屏幕,这两个花坛哪一个大呢?比较它们的大小得知道它们的面积,我们只学过长方形的面积,哪位同学能说一下?(教师板书)
平行四边形的面积我们还不会计算,(出示)小精灵提示我们先用数方格的方法试一试。(切换)
一个方格代表12,不满一格的都按半格计算。
谁来数一数两个图形的面积各是多少?(出示)
平行四边形的底和高各是多少?(出示)
长方形的长和宽各是多少?(出示)
(出示)你发现了什么?
同学们今天这节课我们就来学习“平行四边形的面积”(板书课题)
本节课我们的学习目标是:“1、理解和掌握平行四边形的面积计算公式。 2、会计算平行四边形的面积。”(出示)
要想完成学习目标,还要靠同学们认真自学,请看自学指导。
(二)出示自学指导
1、想一想,如何把平行四边形剪拼成长方形?以小组为单位剪一剪,拼一拼。
2、观察拼成的长方形和原来的平行四边形,拼成的长方形的长与平行四边形的底有什么关系?拼成的长方形的宽与平行四边形高有什么关系?拼成的长方形与原来的平行四边形的面积有什么关系?想一想平行四边形的面积应该怎样计算?
(6分钟后,比一比谁能正确计算出平行四边形的面积。相信你一定行!)
现在开始自学,注意看书的姿势,用剪刀时要注意安全!
(三)、学生自学
1、学生看书自学,教师巡视,督促每个学生都能认真自学。
2、检测学生自学效果
师:自学时间到,谁来演示一下你是怎样把平行四边形剪拼成长方形的?(抽生到前面演示)
观察拼成的长方形和原来的平行四边形,拼成的长方形的长与平行四边形的底有什么关系?拼成的长方形的.宽与平行四边形高有什么关系?拼成的长方形与原来的平行四边形的面积有什么关系?
想一想平行四边形的面积应该怎样计算?(师板书面积公式)
教师小结(展示动画):
同时教师口述:通过割补的方法,我们可清楚地看到,任何一个平行四边形都可以转化为长方形,而且长方形的长和宽恰好等于平行四边形的底和高。所以,平行四边形的面积=底×高。
(边口述,边板书。)教师讲述:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成:S=a×h,简写成:S=ah。(板书)
下面就用你所学的知识去解决一下实际问题。
出示检测题
出示:平行四边形花坛的底是 6,高是 4,它的面积是多少?
抽2名学生上台板演,其他学生写在练习本上,教师巡视,搜集学生检测中出现的错误。
(四)、后教
1、学生自由更正
在学生完成检测后,看黑板上学生的板演,注意做题的步骤,如发现错误和有不同见解的同学,上台更正。
2、讨论归纳
问:做题的步骤是什么?第一步写什么?其中的a表示什么?h表示什么?s呢?
板书:写公式——代入数——计算(单位)——写答话。
(五)、当堂训练
1、
2、
(六)、全课总结
这节课,你有什么收获?
六、板书设计
平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
S=ah
写公式——代入数——计算(单位)——写答话
5
面积的教案14
一、教学内容:
课本第97~98页有关长方形面积计算的内容和相应的”做一做”中的题目,完成练习二十六的第1~5题。
二、教学目标:
1、使学生知道长方形面积公式的推导过程,掌握长方形面积的计算公式与方法,会用公式正确计算长方形的.面积。
2、通过试验、操作、观察、思考,培养学生抽象、概括、发现、创新的能力。
3、渗透真知源于实践的唯物主义的。
三、教具:cai课件、长方形纸
四、教学设想:
通过复习上一节课的内容:面积和面积单位。引入,如果要测量一个长方形操场的面积,用面积单位去量,这种方法好不好?如果要求长方形游泳池的面积,我们能把面积单位摆到水面上去吗?从而引入面积计算的新方法:长方形面积的计算。
然后,出示一个长5厘米、宽3厘米的长方形,让学生通过动手操作,摆一摆可以摆下多少个1平方厘米的小正方形。其次,由学生根据已掌握的知识和刚才动手操作的情况,你是怎样得出这个长方形的面积的,并推导出长方形面积的计算公式。最后通过练习与拓展,巩固所学的知识,发展学生解决问题的能力。
面积的教案15
第四课时:多边形的面积复习
教学内容:教材P113第2题及练习二十五第7、20题。
教学目标:
知识与技能:通过复习,进一步理解多边形的含义,理解和掌握多边形面积计算公式,并能灵活应用公式解决一些问题。
过程与方法:通过整理,感受数学知识内在联系,完善知识结构,进一步理解转化的数学思想和方法。
情感、态度与价值观:通过操作、观察、比较,发展空间观念,渗透等积变换的数学思想,并使学生感受学习数学的乐趣。
教学重点:整理完善知识结构,灵活运用面积公式解决问题。
教学难点:沟通多边形面积公式之间的内在联系。
教学方法:归纳整理,演示讲解;复习回顾。
教学准备:多媒体。
教学过程
一、 构建网络,新知汇总
二、整理复习
1.复习面积单位之间的进率。
说说我们学过的面积单位有哪些,他们之间的进率是多少?板书:
平方厘米 平方分米 平方米 公顷 平方千米
100 100 10000 100
2.及时练习
520平方米=(??)公顷?????300平方千米=( )公顷
4.2公顷=( )平方米 0.12平方米=( )平方分米
三、巩固深化
我们对本单元的知识和方法进行了整理与复习,接下来我们要做一些练习进一步巩固,使同学们把这部分知识掌握得更好。
(一)按要求解答。(只列式,不计算)
1、平行四边形底是4分米,高2.7分米,求它的面积?
2、三角形面积是30平方米,底8分米,求它的高?
3、梯形的面积是84平方米,高10米,上底5米,求下底?
师小结:如果给出图形的面积,让我们去求底或高,除了可以变化公式以外,还可以用方程解答,这也是一个很好的方法。下面我们来看几道判断题。
(二)判断题:
1.三角形面积是平行四边形面积的一半。( )
2.两个面积相等的梯形,形状是相同的。( )
3.两个完全一样的梯形可以拼成一个平行四边形。( )
4.两个三角形的高相等,它们的面积就相等。( )
5.把一个长方形的木条框架拉成一个平行四边形,它的周长和面积都不变。( )
看来 ,同学们的分析和表达能力都很强,现在,我们来解决实际问题。
(三)解决问题
1.教材第113页第2题。
出示第2题,引导学生看题。学生独立解答,并在小组中互相检查。
教师指名板演,然后集体订正。
师:通过计算这些图形面积,你想提醒大家什么?(计算图形面积时,底和高要对应)
2.1.课件出示教材第116页练习二十五第7题。
(1)学生独立解题。
(2)汇报评价。
3.课件出示教材第116页练习二十五第8题。
(1)学生独立解题。
(2)汇报评价。
4.教材第116页练习二十五第9题。
(1)组织学生用剪刀把正方形纸片按题目要求剪一剪。
(2)算一算剩下的面积是多少。
5.教材第116页练习二十五第10题。
(1)组织学生在小组中讨论:怎样计算这个图形的面积呢?
(2)组织学生汇报,并展示求面积的方法,学生可能会有以下几种方法:
①将方格中的图形分割成几个简单的基本图形,分别求出基本图形的面积,再求和得出所求图形的面积。
教师强调分割的方法有多种,引导学生选择容易获取求面积时所需数据的方法进行分割。
②将方格中的图形添补成某个简单的'基本图形,求出基本图形的面积,再分别减去各添补的图形面积,得出所求图形面积。
③已知小方格的边长为1cm,则每个小方格的面积为1cm2,通过数方格来确定图形的面积。
(3)全班交流,集体订正。
四、课堂小结。
多边形的面积计算关键在于熟练地运用多边形的面积计算公式;对于复杂的组合图形的面积的计算,在于巧妙地将组合图形分割或添补成若干个基本图形,进而通过基本图形面积的和或差得到组合图形的面积;对于不规则图形的面积的计算,可以将它分割或添补成已学的简单图形,或是用方格纸转化为已学过的图形来估算。
布置作业:
板书设计
多边形的面积总复习
【面积的教案】相关文章:
面积的教案11-19
面积单位教案11-14
面积单位的教案01-20
《面积计算》教案03-09
圆的面积教案11-04
面积和面积单位教案范文九篇04-11
【精华】面积和面积单位教案三篇04-06
【实用】面积和面积单位教案3篇04-03
【必备】面积和面积单位教案3篇04-05
有关面积和面积单位教案4篇04-06