人教版数学六年级下册教案
在教学工作者实际的教学活动中,就有可能用到教案,教案有助于顺利而有效地开展教学活动。写教案需要注意哪些格式呢?以下是小编收集整理的人教版数学六年级下册教案,仅供参考,欢迎大家阅读。
人教版数学六年级下册教案1
一、教学目标
(一)知识与技能:使学生认识圆柱的底面、侧面和高,掌握圆柱的基本特征。
(二)过程与方法:
1.让学生经历探索圆柱基本特征的过程,提高学生观察、操作、分析和概括的能力。
2.通过学生自主研究,使学生掌握研究立体几何的一般方法,提高学生学习数学的积极性。
(三)情感态度和价值观:进一步培养学生主动探索精神,发展学生的空间观念,提高学生的学习兴趣。
二、教学重难点
教学重点:掌握圆柱的基本特征。
教学难点:高的认识。
三、教学准备
教师:课件,长方体模型,圆柱模型。
学生:每生自带一个圆柱形物体,草稿纸。
四、教学过程
(一)复习旧知,引出课题
1.师:同学们,我们学过哪些立体图形?它们各有几个面?这些面是什么形状?生回答。(根据学生回答板书研究方法)动手操作:画、剪、比、量。
2.(课件出示)师:那下面的这些物体你认识吗?它们是什么形状?如果把这些物体的形状画下来会是什么样子的呢?课件演示:从实物图抽象出圆柱图形。
3.小结:上面这些物体的形状都是圆柱体。揭题:今天我们要一起来研究圆柱。(板书课题)
(二)自主学习
学生仔细观察手中的圆柱模型,边看书边思考:
①圆柱的上、下两个面叫做什么?
②用手摸一摸圆柱周围的面,你发现什么?
③圆柱一共有几个面?是哪几个面?
④圆柱两个底面之间的距离叫做什么?在哪里?
及时练习(课件出示):让学生根据圆柱的特点判断下面的图形。
【设计意图】学生通过看一看,摸一摸,找一找,初步了解圆柱的特征,为后面突破难点打下基础。
人教版数学六年级下册教案2
难点名称
理解本金、利息、利率之间的数量关系,利率和存期一一对应
难点分析
从知识角度分析为什么难
利息=本金×利率×存期,求整年度的利率,只要根据利率表,把整年度的利率和存期一一对应起来,相乘、再乘本金即可求出整年度的利息。但是求半年的利息,学生往往容易出现本金×半年的利息×6。看见根据公式的有问题,学生的利率和存期的关系一一对应起来。
从学生角度分析为什么难
学生对什么是利息,概念抽象、理解困难,六年级学生的心理上一看套公式解决问题,心理的松了,机械的带公式解决问题。学生没有理解半年的年利率的含义,年利率的和存期没有一一对应起来,导致错误。
难点教学方法
1.通过错例对比分析,发现利率和存期是一一对应关系,
2.通过一题多解的方式,学生理解利率和存期一一对应关系
教学过程
一、导入
1.谈话,将多余的钱存入银行即可增加收入,又支援了国家建设。
2.出示存单,介绍利息,思考利息与什么有关系?
二、知识讲解(难点突破)
3.出示利率表,根据利率表解决第一个问题,王奶奶到银行存钱,到期后可以取多少钱?思考问题的同时介绍本金、存期、利息的概念,出示求利息的计算公式,解决王奶奶本金5000元,存期1年后可取回多少钱的问题。
4.改变存期,本金不变,存期由一年变成两年,两年后王奶奶可取回多少钱?主要考察学生能否把存款的利率和存期一一对应起来,
存款是整年:只要用本金×年利率×存期就能求出相应的利息了。
5.设疑激趣,引发学生思考
改变存期由两年调整到半年,半年后的利率是多少呢?
出示计算方法,5000×1.55%×6=465(元)
发现半年的利息怎么比一年的利息还高呢?问题出在哪里?
6.寻找出错原因
(1)1.55%是半年的利率,6是6个月,6个月是多少年呢?1/2或0.5年,现在计算是多少?
(2)介绍另一种计算方法,突出利率和存期可对应关系,
5000×1.55%÷12×6=38.75(元)
(4)通过两种计算利率的方法,理解利率和存期的对应关系。
存期用多少年表示,就要用年利率;存期用多少月表示,就要用月利率。
三、课堂练习(难点巩固)
7.巩固练习
王奶奶本金不变,存期三个月,到期可得多少利息?(独立完成)
5000×1.35%×?=16.88(元)
5000×1.35%÷12×3=≈16.88(元)
四、小结
8.扩展思考:存款、贷款、理财产品都涉及到利率的问题
人教版数学六年级下册教案3
教学内容:
人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例
1、例2。
教学目标:
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
教学重、难点:
负数的意义。
教学过程:
一、谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?
二、教学新知
1.表示相反意义的量。
(1)引入实例。
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
①六年级上学期转来6人,本学期转走6人。
②张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③与标准体重比,小明重了千克,小华轻了千克。
④一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试。
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
……
(3)展示交流。
……
2.认识正、负数。
(1)引入正、负数。
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试。
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识。
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
①同桌交流。
②全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:… …)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4.进一步认识“0”。
(1)看一看、读一读。
谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。
哈尔滨:-15 ℃~-3 ℃
北京:-5 ℃~5 ℃
深圳:12 ℃~23 ℃
温度中有正数也有负数,请把负数读出来。
(2)找一找、说一说。
我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?
现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)
说一说,你怎么这么快就找到了?
(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)
你能很快找到12 ℃、-3 ℃吗?
(3)提升认识。
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。
(4)总结归纳。
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:
(完善板书。)
5.练一练。
读一读,填一填。(练习一第1题。)
6.出示课题。
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?
根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。
7.负数的历史。
(1)介绍。
其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放):
“中国是世界上最早认识和运用负数的国家,早在20xx多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:‘两算得失相反,要令正负以名之。’古代用算筹表示数,这句话的意思是:‘两种得失相反的数,分别叫做正数和负数。’并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”
(2)交流。
简单了解了负数的历史,你有什么感受?
三、练习应用
今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。
课件逐一出示:
1.表示海拔高度。(“做一做”第2题。)
通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高米,可以记作xxxxxxxxxxxxx;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作xxxxxxxxxxxxx。
2.表示温度。(练习一第2题。)
月球表面白天的平均温度是零上126℃,记作xxxxxxxxx℃,夜间的平均温度为零下150℃,记作xxxxxxxxxxxxx℃。
3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?
4.表示时间。(练习一第3题。)
5.“净含量:10±”表示什么意思?
四、总结延伸
1.学生交流收获。
2.总结。
简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。
人教版数学六年级下册教案4
【教学目标】
1、能在具体的情境中,探索确定位置的方法,说出某一物体的位置。
2、会在方格纸上用“数对”确定物体的位置。
3、发展空间观念,初步体会到数形结合的思想。
4、体会生活中处处有数学,提高运用知识解决实际问题的能力。
【教学重点】
使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。
【教学难点】
在方格纸上用“数对”确定位置。
【教法】
情境教学法,创设找图书管理员的情境,激发学习兴趣,感知确定位置的方法。
【学法】
积极参与法,在学习过程中积极思考,理解用数对确定位置的方法,并积极参与动手操作活动,提高看图能力。
【教学准备】
多媒体课件
【教学过程】
一、谈话导入
1、师生谈话。
学校让我们班推荐一位同学到学校图书室做图书管理员,老师已经选好了,那么你们想不想知道这位同学是谁吗?
这位同学在班级中的位置是第三组的。你们知道这位同学是谁吗?他可能是哪几位同学?如果要找到这位同学,还要知道什么条件?
这位同学的座位是在第3排,大家知道这位同学是谁吗?
2、导入新课。
今天这节课,我们就一起来学习确定位置的方法。
板书课题:用数对确定位置
【设计意图:通过谈话中引入数学问题,充分调动了学生的学习兴趣和积极性,为学习新知奠定了基础。】
二、探索新知
1、教学例1。
(1)出示例题1教学图。
让学生观察图,说说张亮同学坐在第几列?第几行。
(竖排叫做列,横排叫做行)
(2)张亮同学坐在第2列,第3行。用数对来表示(2,3)。
(3)让学生用数对表示王艳和赵强的位置。
王艳(3,4)赵强(4,3)
(4)小结。
确定一个同学在教室的位置,要考虑两个要素:第几列和第几行。
【设计意图:通过具体的实例引导学生认识第几列第几行的判断方法,经历应用数学知识分析问题的解决问题的过程】
2、完成第3页的“做一做”。
课件出示电影院和电影票的图片。出示题目:举出生活中确定位置的例子,并说一说确定位置的方法。
(电影院用电影票来确定位置,电影票一般都写着“几排几号”,“排”表示行,“号”表示列。比如“3排7号”用数对表示是(7,3)。
【设计意图:从学生熟悉的情景出发,选择学生感举的事物,提出相关问题,激发学生学习兴趣。】
3、教学例2。
(1)认识方格图。
出示动物园示意图。
指导学生观察图。
这幅动物园示意图与以前见过的示意图有以下几点不同:一是动物园的各场馆都画成一个点,只反映各场馆的位置,不反映其他内容;二是表示各场馆位置的那些点都分散在方格纸竖线和横线的交点上;三是方格纸的竖线从左到右依次标注了0,1,2,…,6;横线从下往上依次标注了0,1,2,…,6,其中的“0”既是列的起始,也是行的起始。
(2)用数对表示图中各场馆的位置。
提问1:我用了数对(3,0)来表示大门的位置,你们知道我是怎样想的吗?
【大门在示意图中处于“竖线3,横线0”的位置上,所以可以用数对(3,0)来表示】
你们能用数对表示其他场馆所在的位置吗?
【熊猫馆(3,5)大象馆(1,4)猴山(2,2)海洋馆(6,4)】
(3)根据数对标位置
在图上标出下面场馆的位置:飞禽馆(1,1)、猩猩馆(0,3)、狮虎山(4,3)。
【设计意图:通过具体的事例认识和理解位置与坐标中数值的对应关系,让学生不但会用数对描述现实生活中的位置,还会描述坐标图上的物体的位置。】
三、巩固运用
1、小游戏:看谁反应最快。
老师说出一组数对,相应的同学要在3秒内起立。
2、做一做。(课件出示)
【设计意图:通过练习,培养学生分析问题、解决问题的能力,加深对知识的理解和应用。】
四、课堂总结
这节课我们学习如何用数对来确定位置,用数对确定位置时,数对中的前一个数表示第几列,后一个数是表示第几行。
五、板书设计
用数对确定位置
竖排叫做列从左往右
横排叫做行从前到后
张亮坐在第2列第3行(2,3)
(列,行)
人教版数学六年级下册教案5
课前准备
教师准备 PPT课件
教学过程
⊙问题导入
师:同学们,上节课我们复习了平面图形的特征,到目前为止,我们学习了哪些平面图形?
预设
生1:我们学过三角形、长方形、正方形、平行四边形、梯形。
生2:我们还学过圆和圆环。
(学生边说教师边把相应的图形贴在黑板上)
师:什么是平面图形的周长和面积呢?我们今天就一起来复习关于平面图形的周长和面积的相关知识。(板书课题:平面图形的周长和面积)
⊙回顾与整理
1.周长和面积的意义。
师:什么是平面图形的周长?什么是平面图形的面积?
预设
生1:围成一个图形的所有边长的总和叫做这个图形的周长。
生2:物体的表面或封闭图形的大小叫做面积。
2.周长和面积的计算公式。
(1)我们学过哪些图形的周长和面积的计算公式?
长方形、正方形、平行四边形、三角形、梯形、圆的周长和面积的计算公式。
结合学生的回答,有序地画出相关的平面图形,为构建知识网络做准备。
(2)如何计算这些平面图形的周长和面积?各个面积公式之间有什么联系?
①长方形的周长=(长+宽)×2,用字母表示为C=2(a+b)。
②长方形的面积=长×宽,用字母表示为S=ab。
③正方形是特殊的长方形,正方形的周长=边长×4,用字母表示为C=4a;面积=边长×边长,用字母表示为S=a
人教版数学六年级下册教案6
教学内容:
成正比例的量
教学目标:
1、使学生理解正比例的意义,会正确判断成正比例的量。
2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
教学重点:
正比例的意义。
教学难点:
正确判断两个量是否成正比例的关系。
教具准备:
媒体课件
教学过程:
一、揭示课题
1、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你能举出一些这样的例子吗?
在教师的指导下,学生会举出一些简单的例子,如
(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
(2)送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。
(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
(4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。
2、这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量
二、探索新知
1、教学例1
(1)出示例题情境图。
问:你看到了什么?生
杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。
(2)出示表格。
高度/㎝ 2 4 6 8 10 12
体积/㎝3 50 100 150 200 250 300
底面积/㎝2
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25㎝2。
板书
教师:体积与高度的比值一定。
(2)说明正比例的意义。
①在这一基础上,教师明确说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
②学生读一读,说一说你是怎么理解正比例关系的。
要求学生把握三个要素
第一,两种相关联的量;
第二,其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。
第三,两个量的比值一定。
(三要素可再省略:1.相关联;2.同时变化;3.比值一定)
(3)用字母表示。
如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:Y/X=K(一定)
(4)想一想
师:生活中还有哪些成正比例的量?
学生举例说明。如
长方形的宽一定,面积和长成正比例。
每袋牛奶质量一定,牛奶袋数和总质量成正比例。
衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
地砖的面积一定,教室地板面积和地砖块数成正比例。
2、教学例2。
(1)出示表格(见书)
(2)依据下表中的数据描点。(见书)
(3)从图中你发现了什么?
这些点都在同一条直线上。
(4)看图回答问题。
①如果杯中水的高度是7㎝,那么水的体积是多少?
生:175㎝3。
②体积是225㎝3的水,杯里水面高度是多少?
生:9㎝。
③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?
生:水的体积是350㎝3,相对应的点一定在这条直线上。
(5)你还能提出什么问题?有什么体会?
通过交流使学生了解成正比例量的图像特征。
3、做一做。
过程要求
(1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?
比值表示每小时行驶多少千米。(速度)
(2)表中的路程和时间成正比例吗?为什么?
成正比例。理由
①路程随着时间的变化而变化;
②时间增加,路程也增加,时间减少,路程也随着减少;
③种程和时间的比值(速度)一定。
(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。
(4)行驶120KM大约要用多少时间?指导学生估算的方法
(5)你还能提出什么问题?
4、课堂小结
说一说成正比例关系的量的变化特征。
学生回答成正比例的理由时,语言表述不清楚,要注意引导学生按照正比例中的三要素来回答
三、巩固练习
完成课文练习七第1~5题。
练习补充,可以从中挑选有关正比例的练习,其它可等学习反比例后再做。
板书设计:
成正比例的量
相关联;同时变化;比值一定
x×y=k(定值)
教学反思:
反思的第(1)个问题是:什么样的两种量叫做相关联的量,资料上解释:一种量变化,另一种量也随着变化,那么一个人的身高和体重算不算两种相关联的量?第(2)个问题是:类型过于多,到底怎么帮助学生整理方法。一节课的学习孩子们基本上理解了正比例的意义,但是对于判断两个量是否成正比例孩子们还是感到困难,在这个环节的教学上我处理的不够好。我要再去请教其他老师,吃透这个知识。帮助孩子们更好的理解。
人教版数学六年级下册教案7
一、学习目标
(一)学习内容
《义务教育教科书数学》(人教版)六年级下册第五单元第68~69页的例1、2。“抽屉原理”是一类较为抽象和艰涩的数学问题,对全体学生而言具有一定的挑战性。为此,教材选择了一些常见的、熟悉的事物作为学习内容,经历将具体问题“数学化”的过程。
(二)核心能力
经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。
(三)学习目标
1.理解“鸽巢原理”的基本形式,并能初步运用“鸽巢原理”解决相关的实际问题或解释相关的现象。
2.通过操作、观察、比较、说理等数学活动,经历鸽巢原理的形成活动,初步形成模型思想,发展抽象能力、推理能力和应用能力。
(四)学习重点
了解简单的鸽巢问题,理解“总有”和“至少”的含义。
(五)学习难点
运用“鸽巢原理”解决相关的实际问题或解释相关的现象。
(六)配套资源
实施资源:《鸽巢原理》名师教学课件
二、学习设计
(一)课堂设计
1.谈话导入
师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请一位同学任意抽5张,不要让我看到你抽的是什么牌。但是老师却知道,其中至少有两张牌是同种花色的,再找一个学生再次证明。
师:看来我两次都猜对了。谢谢你们。老师为什么能料事如神呢?到底有什么秘诀呢?学习完这节课以后大家就知道了。
2.问题探究
(1)呈现问题,引出探究
出示例1:小明说“把4支铅笔放进3个笔筒里。不管怎么放,总有一个笔筒里至少放进2支铅笔”,他说得对吗?请说明理由。
师:“总有”是什么意思?“至少”有2支是什么意思?
学生自由发言。
预设:一定有
不少于两只,可能是2支,也可能是多于2支。
就是不能少于2支。
(2)体验探究,建立模型
师:好的,看来大家已经理解题目的意思了。那么把4支铅笔放进3个笔筒里,可以怎样放?有几种不同的摆法?(我们用小棒和纸杯分别表示铅笔和笔筒)请大家摆摆看,看有什么发现?
小组活动:学生思考,摆放。
①枚举法
师:大部分同学都摆完了,谁能说说你们是怎么摆的。能不能边摆边给大家说。
预设1:可以在第一个笔筒里放4支铅笔,其它两个空着。
师:这种放法可以记作:(4,0,0),这4支铅笔一定要放在第一个笔筒里吗?
(不一定,也可能放在其它笔筒里。)
师:对,也可以记作(0,4,0)或者(0,0,4),但是,不管放在哪个笔筒里,总有一个笔筒里放进4支铅笔。还可以怎么放?
预设2:第一个笔筒里放3支铅笔,第二个笔筒里放1支,第三个笔筒空着。
师:这种放法可以记作(3,1,0)
师:这3支铅笔一定要放在第一个笔筒里吗?
(不一定)
师:但是不管怎么放——总有一个笔筒里放进3支铅笔。
预设3:还可以在第一个笔筒里放2支,第二个笔筒里也放2支,第三个笔筒空着,记作(2,2,0)。
师:这2支铅笔一定要放在第一个和第二个笔筒里吗?还可以怎么记?
预设:也可能放在第三个笔筒里,可以记作(2,0,2)、(0,2,2)。
预设4:还可以(2,1,1)
或者(1,1,2)、(1,2,1)
师:还有其它的放法吗?
(没有了)
师:在这几种不同的放法中,装得最多的那个笔筒里要么装有4支铅笔,要么装有3支,要么装有2支,还有装得更少的情况吗?(没有)
师:这几种放法如果用一句话概括可以怎样说?
(装得最多的笔筒里至少装2支。)
师:装得最多的那个笔筒一定是第一个笔筒吗?
(不一定,哪个笔筒都有可能。)
【设计意图:在理解题目要求的基础上,通过操作活动,用画图和数的分解来表示上述问题的结果,更直观。再通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。】
②假设法
师:刚才我们研究了在所有放法中放得最多的笔筒里至少放进了几支铅笔。怎样能使这个放得最多的笔筒里尽可能的少放?
预设:先把铅笔平均放,然后剩下的再放进其中一个笔筒里。
师:“平均放”是什么意思?
预设:先在每个笔筒里放一支铅笔,还剩一支铅笔,再随便放进一个笔筒里。
师:为什么要先平均分?
学生自由发言。
引导小结:因为这样分,只分一次就能确定总有一个笔筒至少有几支笔了。
师:好!先平均分,每个笔筒中放1支,余下1支,不管放在哪个笔筒里,一定会出现总有一个笔筒里至少有2支铅笔。
师:这种思考方法其实是从最不利的情况来考虑,先平均分,每个笔筒里都放一支,就可以使放得较多的这个笔筒里的铅笔尽可能的少。这样,就能很快得出不管怎么放,总有一个笔筒里至少放进2支铅笔。我们可以用算式把这种想法表示出来。
【设计意图:让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。】
(3)提升思维,建立模型
①加深感悟
师:如果把5支笔放进4个笔筒里呢?大家讨论讨论。
预设:5支铅笔放在4个笔筒里,先平均分,不管怎么放,总有一个笔筒里至少有2支铅笔。
师:把7支笔放进6个笔筒里呢?还用摆吗?
学生自由发言。
师:把10支笔放进9个笔筒里呢?把100支笔放进99个笔筒里呢?
师:你发现了什么?
预设:我发现铅笔的支数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2支铅笔。
师:你的发现和他一样吗?
学生自由发言。
师:你们太了不起了!
师:难道这个规律只有在铅笔的支数比笔筒数多1的情况下才成立吗?你认为还有什么情况?
练一练:
师:我们来看这道题“5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子,为什么?”
师:说说你的想法。
师:由此看来,只要分的物体比抽屉的数量多,就总有一个抽屉里至少放进2个物体。这就是最简单的鸽巢原理。【板书课题】
介绍狄利克雷:
师:鸽巢原理最先是由19世纪的德国数学家狄利克雷提出来应用于解决问题的,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫狄利克雷原理,也叫抽屉原理。
②建立模型
出示例2:一位同学学完了“鸽巢原理”后说:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有3本书。他说得对吗?
学生独立思考、讨论后汇报:
师:怎样用算式表示我们的想法呢?生答,板书如下。
7÷3=2本……1本(2+1=3)
师:如果有10本书会怎么样能?会用算式表示吗?写下来。
出示:
把10本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
10÷3=3本……1本(3+1=4)
师:观察板书你有什么发现?
预设:我发现“总有一个抽屉里至少有2本”,只要用“商+1”就可以得到。
师:那如果把8本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请大家算一算。
学生讨论,汇报:
8÷3=2……22+1=3
8÷3=2……22+2=4
师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。
师:认真观察,你认为“抽屉里至少有几本书”或“鸽笼里至少有几只鸽子”可能与什么有关?
预设:我认为根“商”有关,只要用“商+1”就可以得到。
师:我们一起来看看是不是这样(引导学生再观察几个算式)啊!果然是只要用“商+1”就可以了。
引导总结:我们把要分的物体数量看做a,抽屉的个数看做n,如果满足【a÷n=b……c(c≠0)】,那么不管怎样放,总有一个抽屉里至少放(b+1)本书。这就是抽屉原理的一般形式。
鸽巢原理可以广泛地运用于生活中,来解决一些简单的实际问题。解决这类问题时要注意把谁看做“抽屉”。
【设计意图:借助直观操作和假设法,将问题转化为“有余数的除法”的形式。可以使学生更好地理解“抽屉原理”的一般思路,经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。考查目标1、2】
3.巩固练习
(1)学习了“鸽巢原理”,我们再回到课前的“扑克牌”游戏,你现在能解释一下吗?(出示课件)学生思考,讨论。
(2)第69页的做一做第1、2题。
4.全课总结
师:通过这节的学习,你有什么收获?
小结:今天这节课我们一起研究了鸽巢原理,也叫抽屉原理,解决抽屉原理问题关键就是找准物体和抽屉,在一些复杂的题中,还需要我们去制造抽屉。
(三)课时作业
1.一个小组共有13名同学,其中至少有几名同学同一个月出生?
答案:2名。
解析:把1—12月看作是12个抽屉,13÷12=1…11+1=2【考查目标1、2】
2.希望小学篮球兴趣小组的同学中,最大的12岁,最小的6岁,最少从中挑选几名学生,就一定能找到两个学生年龄相同。
答案:8名。
解析:从6岁到12岁一共有7个年龄段,即6岁、7岁、8岁、9岁、10岁、11岁、12岁。用7+1=8(名)【考查目标1、2】
第二课时鸽巢原理
中原区汝河新区小学师芳
一、学习目标
(一)学习内容
《义务教育教科书数学》(人教版)六年级下册教材第70页例3。本例是“鸽巢原理”的具体应用,也是运用“鸽巢原理”进行逆向思维的一个典型例子。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”,这样就把“摸球问题”转化为“抽屉问题”。
(二)核心能力
在理解鸽巢原理的基础上,利用转化的思想,把新知转化为鸽巢问题,提高分析和推理的能力。
(三)学习目标
1.进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思维,解决实际问题,体会转化思想。
2.经历运用“抽屉原理”解决问题的过程,体验观察猜想,实践操作的学习方法,提高分析和推理的能力。
(四)学习重点
引导学生把具体问题转化为“抽屉原理”。
(五)学习难点
找出“抽屉”有几个,再应用“抽屉原理”进行反向推理。
(六)配套资源
实施资源:《鸽巢原理》名师教学课件
二、学习设计
(一)课堂设计
1.情境导入
师:同学们,你们喜欢魔术吗?今天老师给你们表演一个怎么样?看,这是一副扑克牌,去掉两张王牌,还剩下52张,请同学们任意挑出5张。(让5名学生抽牌)好,见证奇迹的时刻到了!你们手里的牌至少有2张是同花色的。
师:神奇吧!你们想不想表演一个呢?
师:现在老师这里还是刚才这副牌,请你抽牌,至少抽多少张牌才能保证至少有2张牌的点数相同呢?
在学生抽的基础上揭示课题。教师:这节课我们学习利用“鸽巢原理”解决生活中的实际问题。(板书课题:鸽巢原理)
2.探究新知
(1)学习例3
①猜想
出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?
预设:2个、3个、5个…
②验证
师:我们的猜想是不是正确呢?我们可以用画一画、写一写的方法来说明理由,并把验证的过程进行整理。
可以用表格进行整理,课件出示空白表格:
学生独立思考填表,小组交流。
全班汇报。
汇报时,指名按猜测的不同情况逐一验证,说明理由,看看解决这个问题是否有规律可循。
课件汇总,思考:从这里你能发现什么?
教师:通过验证,说说你们得出什么结论。
小结:盒子里有同样大小的红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。
③小结
师:为什么球的个数一定要比抽屉数多?而且是多1呢?
预设:球有两种颜色,就是两个抽屉,从最不利的情况考虑摸2个球都不同色,就必须多摸一个,所以球一定要比抽屉数多1。其实摸4个球、5个球或者更多球,都能保证一定有2个球同色,但问题中要求摸的球数必须“至少”,所以摸3个球就够了。
师:说得好!运用学过的知识、逆推的方法说明了“只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色”。这一结论是正确的。
板书:只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色。或者说只要物体数比抽屉数至少多1,就能保证有一个抽屉至少放2个物体。
(2)引导学生把具体问题转化成“抽屉原理”。
师:生活中像这样的例子很多,我们不能总是猜测或动手试验,能不能把这道题与前面讲的“抽屉原理”联系起来思考呢?
思考:①摸球问题与“抽屉原理”有怎样的联系?
②应该把什么看成“抽屉”?有几个“抽屉”?要分别放的东西是什么?
学生讨论,汇报结果,教师讲评:因为有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样把“摸球问题”转化成“抽屉问题”,即“只要分的物体比抽屉多1,就能保证有一个抽屉至少有2个同色球”。
从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个抽屉里各拿了1个球,不管从哪个抽屉里再拿1个球,都有2个球是同色的。假设至少摸a个球,即a÷2=1……b,当b=1时,a就最小。所以一次至少应拿出1×2+1=3个球,就能保证有2个球同色。
结论:要保证摸出的球有两个同色,摸出的球数至少要比抽屉数多1。
3.巩固练习
(1)完成教材第70页“做一做”第1题。
(2)完成教材第70页“做一做”第2题。
4.课堂总结
师:这节课你学到了什么知识?谈谈你的收获和体验。
(三)课时作业
1.有黑色、白色、蓝色、红色手套各10只(不分左、右手),至少要拿出多少只(拿的时候不看颜色),才能在拿出的手套中,一定有两只不同颜色的手套?
答案:5只。
解析:4个颜色相当于4个抽屉,保证一定有两只不同的颜色,相当于分的物体个数比抽屉多1。【考查目标1、2】
2.一个鱼缸里有很多条鱼,共有5个品种。至少捞出多少条鱼,才能保证有4条鱼的品种相同?
答案:16条。
解析:5个品种相当于5个抽屉,保证有4条鱼品种相同,所放物品的个数是:5×3+1=16。【考查目标1、2】
人教版数学六年级下册教案8
教学内容:
九年制义务教育小学数学第十二册P31~32页
教学目标:
1、通过学习和操作,认识圆柱的特征,能看懂圆柱的立体图,认识圆柱的高和圆柱侧面的展开图。
2、使学生形成圆柱的清晰表象,能根据圆柱的特征辨认圆柱体,认识圆柱的高,并能想象出圆柱侧面的展开图,培养学生的空间观念。
3、通过观察、操作、思考、讨论等活动,培养学生探索和解决问题的能力。
教学重点:理解掌握圆柱的特征和侧面展开图
教学难点:使学生弄清圆柱侧面展开得到一个长方形,这个长方形的长与圆柱底面周长,宽与圆柱的高之间的关系。
教学准备:
教师:课件,圆柱模型,卡纸做的长方形(长30 cm,宽20 cm),正方形。
学生:每生自带一个侧面包装好的圆柱形物体,剪刀。
教学过程:
一、创设情境,引入课题:
出示一个长方形小旗,快速旋转,让学生观察:看到了什么?(圆柱)
点出课题:圆柱的认识
对于圆柱一年级时我们已经有了初步认识,今天我们对它进行进一步的研究,相信将会对圆柱的认识更加深刻。
二、学习新知
1.认识圆柱的特征
(1)观察比较,建立表象
师:生活中的圆柱体很多,同学们都在那些地方见过圆柱?
课件展示老师搜集的圆柱图片,从实物中抽象出圆柱的立体图形。
(2)操作感知,归纳圆柱的特征
师:圆柱由那些面组成,这些面有什么特征?下面我们就利用准备好的圆柱通过看一看,摸一摸,滚一滚等方式对圆柱进行研究。重点解决以下问题:(课件显示)
圆柱由那些面组成?这些面有什么特征?
圆柱上下两个面大小相同吗?请你通过量一量,比一比等方式进行验证。
活动完成,汇报交流,教师及时板书,引导,得出圆柱的组成及特征。
2.认识圆柱的高
瞧,老师这还有两个圆柱呢。注意看,它们的底面相同,那它们的什么不同呢?那什么是圆柱的高呢?你认为圆柱的高指的是什么?谁能指一指?
课件讲解圆柱两个底面之间的距离叫做高。
让学生再指出几条高。体会高有无数条。并引导学生明白内部也有高。并用课件演示高一样长。课件出示:圆柱有无数条高,长度相等。
介绍生活中圆柱的高的不同叫法。
及时练习(课件展示)
这些问题孩子们轻而易举就解决了。看你们这么棒,老师手中的这个小圆柱也忍不住想请你们帮个忙了。它想知道自己身上的侧面包装纸有多大。该怎么办呢?
3.研究圆柱的侧面展开图
(1)思考:你想怎样剪呢?剪完展开后会是什么形状呢?想一想。
(2)小组合作探究:(课件出示探究要求)
(3)活动完成后小组汇报。(找两组同学上去边演示边讲解,师适时追问并板书)长方形的长就是圆柱的底面周长,宽就是圆柱的高。
(4)师进行演示操作,并把侧面展开图贴在黑板上。
(5)课件演示侧面展开整个过程,让学生把整个过程理解消化。
(6)思考:圆柱的侧面展开图有没有可能是正方形呢?什么情况下是正方形呢?(用正方形纸演示)
小结:圆柱的侧面如果沿高剪开,侧面展开就是一个长方形或正方形,如果斜着剪开就是平行四边形,如果沿折线或取下剪开得到的将会是不规则图形。
这节课不知不觉中我们既认识了圆柱的特征,又研究了圆柱的侧面展开。同学们的学习效果如何呢?下面我们就来对自己作一检测。
三、巩固练习
1、概念辨析
2、辨一辨(哪个是圆柱的展开图)
3、创造圆柱
结束语:同学们,其实在刚才旋转创造圆柱的过程中,隐藏着一个奇妙的数学现象呢。想知道吗?(点动成线,线动成面,面动成体课件显示)有趣吗?在神奇的数学世界里,像这种有趣的现象还有许多,就等着你们去探索,去发现呢!
教学反思:
圆柱是一种常见的立体图形,在实际生活中,圆柱形的物体很多,学生对于圆柱都有初步认识。因此,在导入环节,我引导学生从平面图形联想到立体图形,感受“面动成体”从而引入新课。本课的重点是认识圆柱的特征。教学时我引导学生自己动手操作探究,研究圆柱的基本特征。
在探究的过程中,我努力为学生创设动手实践的机会,给学生足够的时间进行操作和思考,让学生获得丰富的活动经验。活动分两个层次进行:活动一研究圆柱特征,让学生通过看一看、摸一摸、滚一滚等方式进行研究,探索出圆柱的主要特征;活动二探究侧面展开图。通过这样的活动体验,让学生经历学习数学的过程,使学生在动手操作中充分感悟,形成表象,观察、比较、探索规律。
本节课属于空间与图形教学,它的另一个重要功能是培养学生的空间想象能力。因此我通过多个环节来发展学生的空间想象能力:
1、从长方形旋转得到圆柱引入新课。
2、在进行侧面展开之前,让学生先去想象展开后的形状,再去动手操作。
3、巩固练习创造圆柱中鼓励学生大胆去想象、创造圆柱。以此来培养学生的空间想象力,发展空间观念。
人教版数学六年级下册教案9
教学内容:
教科书P23-26的内容,P24做一做,完成练习四的第1、2题。
教学目标:
1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。
2、过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。
3、养学生的自主探索意识,激发学生强烈的求知欲望。
教学重点:
掌握圆锥的特征。
教学难点:
正确理解圆锥的组成。
教具准备:
每人一个圆锥,师准备一个大的圆锥模型。
教学过程:
一、复习
1、圆柱体积的计算公式是什么?
2、圆柱的特征是什么?
二、新课
1、圆锥的认识 (直观感受观察讨论汇报)
(1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。
(2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O)
(3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)
(4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。 (沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)
2、小结
圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.
3、测量圆锥的高(组织学生分组进行测量)
由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。
(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;
(3)竖直地量出平板和底面之间的距离。
4、教学圆锥侧面的展开图
(1)学生猜想圆锥的侧面展开后会是什么图形呢?
(2)实验来得出圆锥的侧面展开后是一个扇形。
三、课堂练习
1、做第24页做一做的题目。
让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。
2、练习四的第1题。
(1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。
(2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。
3.完成练习四的第2题。
补充习题
1出示一组图形,辨认指出哪些是圆锥。
2出示一组图形,指出哪个是圆锥的高。
3出示一组组合图形,指出是由哪些图形组成的。
四、总结
关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?
教学反思:
观察、感知中认识并掌握圆锥的特点,经历探究测量圆锥高的方法的过程,加深了对圆锥高的认识。在旋转,对比圆柱和圆锥的过程中,加深对圆锥特点的认识,发展学生的思维。
人教版数学六年级下册教案10
教学内容:
教材第25~26页练习与应用第7~11题、探索与实践12~14题、评价与反思。
教学目标:
1.使学生进步掌握圆柱、圆锥体积计算方法,沟通已经学过的一些形体体积计算之间的联系。
2.培养学生综合运用知识和解决简单实际问题的能力。
教学重点:
沟通已经学过的一些形体体积计算之间的联系。
教学难点:
综合运用知识和解决简单实际问题。
教学过程:
一、揭示课题
我们已经复习了圆柱的表面积、圆柱和圆锥体积的计算。这节课继续复习这方面的知识,特别是表面积、体积计算知识的实际应用。(板书课题)通过复习,使学生进一步掌握表面积、体积的汁算方法,提高应用知识的能力。
二、复习体积计算
1.复习公式。
提问:长方体、正方体的体积怎样计算?(板书时出示相应图形)为什么正方体体积等于边长a的立方?圆柱体积计算公式是怎样的?这个公式怎样得到的?圆锥的体积公式是怎样的?为什么要乘以1/3 ?
2.做复习第7题。
让学生在练习本上独立计算。
三、知识应用复习
我们掌握了这些基础知识,可以解决生产、生活中的一些实际问题。
1.做练习四第8题。
引导学生把新知与旧知有机结合起来进行比较。
2.做练习四第9题。
结合画图演示水流的速度就是圆柱的高,每分钟的高在每秒的基础上乘以60。
3.做练习四第10题。
提问:用这堆沙子去填长方体的沙坑哪一个量是相等的?(体积)接着学生计算。
4.做练习四第11题。
出示题目
结合题目和图形理解长方体纸箱的长、宽、高与每个圆柱体饮料罐相相关数据的关系。接下来学生自主完成。(教师要注意后进生的辅导)
5.做练习四第12题。
可以先举例说明,再概括。
6.做练习四第13题。
提问:要求圆柱体饮料罐的容积需要测量哪些数据?(要注意从它的里面测量)
通过计算再与商标纸上标出的容积比一比,你发现什么?加强学生把数学与生活有效结合起来。
7.做练习四第14题。
先让学生动手操作,再交流。
8.评价与反思:结合3个方面让学生自主评价。
9.让学生了解你知道吗?
四、课堂小结
通过这节课复习,你进一步明确了哪些知识?
五、课堂作业
基础训练
人教版数学六年级下册教案11
通过本课的教学,我认为在教学中要注意以下几点:
一、生活经验与数学知识要自然融合
开始,从生活中引入学生熟悉的中国地图,让学生通过画教室的平面图,研究图上距离和实际距离的关系,进而理解和掌握比例尺的意义。但后一个的教学过程比前面的顺畅自然,因为后者更注重学生已有生活经验、已有数学知识和新学知识的融合。达到了旧知到新知的自然过渡,同时也促进了学生的主动发展。
实际距离缩小后画在图上是学生已有的生活经验,如何上升到比例尺这一新知识中来呢?首先,请同学们提问来表示图上距离和实际距离的关系,学生自然启用已有的数学知识“缩小了一定的倍数”,通过让同学计算出图上距离和实际距离的比,点明这个比就是今天要学的比例尺。这样设计的目的是让学生用已有的数学知识“缩小几倍、比的意义”为纽带,把原有的生活经验“缩小后画在图上”和新知识“比例尺的意义”进行了融会贯通,做到了三者之间的自然融合。
新课标指出:数学教学中,应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。我想,这一过程也就是生活经验和新旧数学知识的融合过程,融合促进了学生的主动建构,提高了学生的应用和学习能力,实现了学生的生命发展。
二、教师的点拨与讲解要适时适度
新课标提倡把课堂还给学生,让学生成为课堂的主人,而教师只是教学活动的组织者、引导者和参与者。教师如何充当好这一角色呢?我认为,教师既然是引导者,教学中的讲解和点拨是必需的;教师既然是组织者、参与者,讲解和点拨又应是适时适度的。
在教学比例尺的意义时,由简单的画图到具体分析计算图上距离和实际距离关系的思维过程,同学们对生活问题数学化后,比例尺意义的揭示已是“万事具备,只欠东风”了,此时,教师的讲解成为必然。学生的学习因为教师适时的讲解有了自然过渡,实现了学生认知的和谐发展。
当然,教师的讲解和点拨还应是适度的。课堂上教师只是配角,是为学生的主动学习服务的,因此,教师的提问与讲解应具有启发性。
三、丰富了学生内心的情感世界
新的课程理念要求每一位教师树立“以人为本”的思想,在课堂教学中发挥情感教育的作用,以学生饱满的热情和积极的参与,而赢得课堂教学的高效益。本节课以学习小组为单位,教师给学生充分的时间,让他们探索、尝试、讨论、交流,教师仅仅是他们当中平等的一员。在师生互动、生生互动的过程中,学生体验到了探索的挫折与挑战、合作的效益与快乐、成功的喜悦与陶醉、事后的回顾与反思……这样的心理历程,使学生不但加深了对所学知识的认识,体验了探索的过程与方法,更增强了学生学好数学的自信心,这是培养学生终身学习的愿望与能力的有效手段。
四、对学生的理解要肯定和评价
以人为本是新课标的基本理念,在这一理念指引下,数学课堂教学中应重视数学学习的个性化发展,教师要尊重学生的学习,既要尊重学生对数学的不同理解,又要尊重学生的数学思维成果。
对于求比例尺,我让学生用例题中的方法去解答,对于学生的解法只是一句话带过,没有让学生对自己的解法加以阐述,也没有对学生的解法进行合理的评价。这无疑是违背新课程标准的。要遵循学生学习数学的心理规律,就要尊重学生的理解,让学生在不断的体验和感悟中总结和调整自己的学习,在掌握知识、提高能力的同时,学会学习。
不足的地方:这方面的活动比较少,学生感到生疏。今后,在教学过程中,对有关这方面的活动要加强探究,让学生得到锻炼。
人教版数学六年级下册教案12
教学目标
1、通过调查利率,了解利率调整的原因;计算不同的理财方式带来的不同收益,知道如何使收益最大;了解千分数、万分数的概念。
2、让学生经历整理信息、利用信息的过程,获得运用数学知识解决实际问题的能力。
3、通过探究活动,使学生感受数学知识与日常生活的密切联系,体会学数学、用数学的乐趣,激发学习数学的热情。
教学重难点
1、深化百分数的意义和运用,掌握百分数问题的解决办法。
2、强调生活体验和社会实践,培养分析和解决问题的能力。
教学过程:
一、谈话导入
1、谈话:同学们,在前面的学习中,我们已经知道“利息”与我们的生活息息相关,可以说“利息”也是我们的生财方法之一。但是,不一样的理财方式,带来的效益是不同的,那么怎样理财才能给我们带来尽可能多的回报呢?那就一起来参加今天的活动吧!请同学们先回忆一下,什么是利息和利率?怎样求存款利息?
利息=本金×利率×存期
2、活动1:昨天老师给大家留了作业,让你们去调查一下附近银行的最新利率,并与课本第11页的利率表进行对比,了解国家调整利率的原因,现在小组内交流一下。
(1)学生分组交流,老师选取几份调查表全班展示。
(2)问:你们知道国家为什么要调整利率吗?
【设计意图】
通过对附近银行的调查,不仅了解到当前的利率情况和国家调整利率的`原因,还有助于提高学生自主搜集信息的能力。
二、探索新知
1、活动2。
师:我们了解了利率也是根据实际需求不断调整的,而具体到我们个人的实际需求,在选取理财方式时,也要慎重。请根据第16页的普通利率表,帮李阿姨算一算,如果把准备给儿子的2万元存入银行,供他六年后上大学,哪种方法获得的利息最多?
(1)小组合作完成,可以用计算器计算。
出示第16页利率表,小组合作完成时,教师巡视了解情況。
(2)组织学生交流,重点明确存期六年,需要取出再次存入时,要把上一次的利息作为本金的一部分存入。
普通存款:一年一年存存6次共23881。05元
普通存款:二年二年存存3次共24845。94元
普通存款:三年三年存存2次共25425。13元
普通存款:五年一年存存2次共25492。5元
普通存款:一二三年存存3次共24968。49元
国债存款:一年一年存存6次共24871。53元
国债存款:五年一年存存2次共26962元
国债存款:三年三年存存2次共27046。73元
教育储蓄:六年存1次共25700元
(3)这些方案中你会选择哪种方案,为什么?
通过计算,使学生认识到国债的收益最高。
(4)小结:在本金相同、存期相同的情况下,利率越高利息越高。
【设计意图】
在本环节的教学中,主要采取学生自主尝试解决问题的方式,让学生通过计算和对比,发现在本金相同和存期相同的情况下,利率越高利息越高。
2、认识千分数和万分数。
(1)学生自主阅读课本第16页“你知道吗?”
(2)学生交流自己对千分数和万分数的理解。
(3)强调千分号和万分号的写法。
三、课后作业
自己去各大银行了解利率情况,给自己的压岁钱设计一个合理的方案,供自己六年后上大学用,并算出到期后的本息。
四、课堂总结
在本节课的学习中,你有哪些收获?
学生自由交流各自的收获体会。
总结:生活中无处不存在百分率,生活中蕴含着无穷的数学知识,希望同学们关心我们的生活,热爱我们的数学,积极用数学知识解决生活中的同题。
教后思考:
人教版数学六年级下册教案13
教学内容:
人教版小学数学教材六年级上册第96~97页例1及相关练习。
教学目标:
1.通过学习,使学生初步认识扇形统计图的特点和作用,知道扇形统计图可以清楚地表示出各部分数量和总量之间的关系。
2.能看懂扇形统计图,并能从图中获取所需要的信息,进行简单的分析,进一步增强学生的统计意识,感受统计的价值。
教学重点:
看懂扇形统计图,知道扇形统计图的特征,并能从统计图中读出必要的信息。
教学难点:
根据统计图进行简单的数据分析。
教学准备:
课前统计本班学生喜欢的体育项目,课前统计学生自己一天的作息时间安排,课件。
教学过程:
一、创设情境,谈话激趣
1.出示教材第96页情境图,说说同学们正在干什么?
2.在这些体育项目中,你喜欢什么活动?出示统计表,进行统计。(可在课前进行调查统计,利用Excel自动生成扇形统计图)
喜欢的项目
乒乓球足球跳绳踢毽其他人数
【设计意图】联系学生生活实际,统计自己喜欢的体育项目,为引出有关统计数据提供了现实背景。同时,采用真实的数据进行教学,可以引发学生学习的兴趣,也可以让他们经历数据收集、整理的全过程,进一步体会到统计的意义和价值。
二、整理数据,引入新课
1.通过这张统计表,我们可以得到什么信息?
预设:数量的多少对比:如喜欢乒乓球人数最多,喜欢足球的比喜欢踢毽的多2人等;数量求和:如喜欢乒乓球的和喜欢足球的一共有20人等。
2.如果要比较喜欢每种运动的人数占全班人数的多少,可以怎样比较?
3.如何计算喜欢各种运动项目的人数占全班人数的百分之多少呢?
4.学生进行口算或笔算,完成统计表,并进行校对。
喜欢的项目
乒乓、球足球、跳绳、踢毽、其他
人数
12 8 5 6 9
百分比
30% 20% 12.5% 15% 22.5%
【设计意图】先让学生根据统计表得到数量之间的关系,再让学生计算出百分比并补充表格,可以让学生体会到百分比不仅可以表示出喜欢各项运动的人数的多少,还可以体现出喜欢各项运动的人数与全班总人数之间的关系,加深百分比与绝对人数之间的联系和区别。
三、合作交流,探究新知
1.认识扇形统计图
(1)如果我用这样一张图来统计我们最喜欢的运动项目,用这个扇形表示乒乓球的30%,你觉得这整个圆表示的是什么?
(2)乒乓球的30%又表示什么?
预设:把全班人数看作单位“1”,喜欢乒乓球的人数占全班人数的30%;把一个圆平均分成100份,喜欢乒乓球的占其中的30份。
(3)你能根据我们刚才计算的,把这张图补充完整吗?(教师可以逐项出示,并可以让学生根据扇形的大小来判断一下这块扇形可能表示的是哪个运动项目。)
(4)根据学生回答完成扇形统计图。
(5)揭题:像这样的统计图,我们把它叫做扇形统计图。(板书课题)
(6)想想各个扇形的大小与什么有关系?
(7)小结:扇形的大小和项目所占总人数的百分比有关。我们可以根据扇形的大小来判断数量的大小。
2.理解扇形统计图的特征
(1)看图说说,在这幅统计图中你还可以知道哪些信息?
预设:量的多少:如谁多谁少,谁和谁一样多;部分和总量的关系:如喜欢乒乓球和足球的人数占了总人数的一半,喜欢踢毽和跳绳以及其他项目的人数占了总人数的一半。
(2)说说这样的统计图有什么优势?
预设:可以根据扇形的大小清楚直观地看到量的相对大小;可以看到各部分和整体之间的关系。
(3)小结:在这样的统计图上,我们不仅可以直观地比较各个扇形的相对大小,还能清楚地看出各部分与整体之间的关系。
【设计意图】通过计算、选择、补充,让学生经历扇形统计图制作的过程,使学生对扇形统计图有一个较为完整、全面的认识,同时通过对信息的整理和对扇形统计图的优势分析,明确扇形统计图的特点。
3.尝试练习
出示教材第97页“做一做”的内容。
(1)你能看懂这张扇形统计图吗?统计的是什么?你是怎么知知道的?(可以根据旁边的图例来知道各个扇形代表的项目。)
(2)说说从图上你得到了哪些信息?
(3)如果每天喝一袋250 g的牛奶,能补充每种营养成分各多少克?引导学生用百分数的意义理解各百分数和250 g的关系,进而算出各种营养成分多少克。
人教版数学六年级下册教案14
教学目标
在动画动手操作总了解构建圆柱的侧面展开图与底面周长和高的关系,培养数学素养。
重难点分析
重点分析了解构建圆柱的侧面展开图与底面周长和高的关系,光凭字面很难理解他们之间的关系,需要具有一定的空间理解能力,动手动脑能力,将静态的画面转为动态画面,具有一定的难度。
难点分析圆柱的侧面展开图与底面周长和高的关系,需要具有一定的空间理解能力,学生较难感受。
教学方法
1.通过动手操作,动画演示了解构建圆柱的侧面展开图与底面周长和高的关系。
2.通过体验圆柱与日常生活密切联系,体验数学源于生活,高于生活。
教学过程
一、导入
1.探究圆柱各部分的组成和特征
2.圆柱究竟是怎么样的呢?(课件出示)
二、知识讲解(难点突破)
3.认识圆柱的底面、高和侧面
(一)小组合作:探究圆柱各部分的组成和特征。
师:那么圆柱究竟是怎么样的呢?(课件出示)
①、用手摸一摸、滚一滚,圆柱与长方体、正方体有何不同?你发现了什么?
②、圆柱有几个面组成?
③、小组讨论并验证:两个底面有什么关系?
④、量一量圆柱两个底面之间的距离有什么特点?
(二)、小组汇报:
学生动手操作,小组内交流感知。
师:哪一组同学来给大家说说看,圆柱有哪些特征?你们是怎么验证的?
(学生汇报,教师即时补充)
A组:指出圆柱有3个面组成,2个底面和一个侧面,2个底面相等。
B组:知道圆柱有3个面组成,2个底面和一个侧面
C组:协助下指出圆柱的3个面。
生:我们知道了圆柱有3个面组成,长方体和正方体都有6个面。
生:上下两个面是圆形。
生:圆柱两个底面之间的距离是一样的。
师:指一指手中圆柱的底面、侧面。
(板书:2个底面,1个侧面)
圆柱的这些面有什么特征呢?
(三)、观察、比较圆柱底面的特征。
A组生:圆柱的两个底面都是圆,大小相等。
师:你是怎样知道两个底面相等的?
预设:剪出来比较、量直径计算、画在纸上倒过来观察是否重合。(分别请学生演示验证)
师:用哪种方法验证最简单?
A组生:画在纸上倒过来观察。
(四)、圆柱的高。
师:圆柱的高什么发生了变化?
引导:哪段距离表示圆柱的高?
请看屏幕,圆柱两个底面之间的距离,就叫圆柱的高。
(课件出示:圆柱两个底面之间的距离叫做高)
师:圆柱的高在哪些地方可以找到?
根据学生的回答,课件上显示并用有颜色的线闪烁。
师:你能在你的圆柱上指出这条高吗?
教师讲解:高是两个底面之间的距离,应该垂直于两个底面。
(五)、圆柱的侧面
(1)、组织学生摸一摸圆柱形的模型,看一看圆柱侧面在哪里,猜想一下侧面展开后是什么形状。
组织学生分小组操作:剪开一个圆柱模型的侧面,再展开观察。
得出结果:AB组:圆柱的侧面展开后是一个长方形。
(2)动手剪一剪
沿着罐头盒的侧面剪开,展开的包装纸是什么图形?
(注意剪刀的安全使用)
(六)知识小结
圆柱有2个完全相同底面和1个侧面组成。两个底面之间的距离是圆柱的高。
三、课堂练习(难点巩固)
4.知识拓展
(一)、圆柱的高还有其他的说法。
(课件演示)你看:一口水井是圆柱形的,这个圆柱的高还可以说是“深“,一个1元硬币是圆柱形的,这个圆柱的高还可以说是“厚“,水管也是圆柱形的,它的高还可以叫”长“。
(二)、师:为什么树干都是圆柱形的?
(课件出示小知识)圆柱具有较大的支撑力。树木的树冠全靠主干支撑。特别是硕果累累的果树,上面挂着许多果实,需要强有力的树干支撑,才能生存。
圆柱形的树干没有棱角,狂风吹打时,不论风卷着尘沙、杂物从哪个方向吹来,受影响的都只是极少部分,不易受到冲击的伤害。因此,树干的形状是圆柱形的,这是树木对自然环境适应的结果,也是长期进化的结果,更是为了适应生长的需要。
四、小结
我们认识了一种新的立体图形-圆柱,这一类图形有几个共同的特点:比如它们的上、下底面都是完全相等圆,侧面展开后是一个长方形。
人教版数学六年级下册教案15
课前准备
教师准备 PPT课件
教学过程
⊙提问导入
1.提问激趣。
根据“甲是乙的”,你能想到什么?
预设
生1:乙是甲的。
生2:甲比乙少,乙比甲多。
生3:甲是甲、乙之差的5倍。
生4:甲是甲、乙之和的。
生5:乙比甲多20%。
……
2.导入新课。
这节课我们复习用分数和百分数的知识解决问题。[板书课题:解决问题(二)]
⊙回顾与整理
1.分数(百分数)的一般应用题。
(1)分数(百分数)乘法应用题的特征及解题关键各是什么?
①特征:已知单位“1”的量和分率,求与分率所对应的实际数量。
②解题关键:准确判断单位“1”的量。找准所求问题对应的分率,然后根据一个数乘分数的意义正确列式。
(2)分数(百分数)除法应用题的特征及解题关键各是什么?
①特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,就是求它们的倍数关系。
②解题关键:从问题入手,理清把谁看作标准量,也就是把谁看作单位“1”,谁和单位“1”的量作比较,谁就是被除数。
(3)分数(百分数)应用题的常见题型有哪些?如何解答?
①求甲是乙的几分之几(百分之几):甲÷乙。
②求甲比乙多(少)几分之几:(甲-乙)÷乙或(乙-甲)÷乙。
③已知甲比乙多(少)几分之几,求甲:乙×。
④已知甲比乙多(少)几分之几,求乙:甲÷。
⑤求百分率。
发芽率=×100%
小麦的出粉率=×100%
产品的合格率=×100%
出勤率=×100%
⑥求利息:利息=本金×利率×时间
2.分数应用题的特例——工程问题。
(1)什么是工程问题?
明确:工程问题是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。
(2)解决工程问题的关键是什么?
明确:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况灵活运用公式解题。
(3)工程问题的数量关系式有哪些?
预设
生1:工作总量=工作效率×工作时间
生2:工作效率=工作总量÷工作时间
生3:工作时间=工作总量÷工作效率
生4:合作时间=工作总量÷工作效率和
【人教版数学六年级下册教案】相关文章:
人教版小学数学教案11-09
人教版六年级数学教学总结01-24
人教版《测量》教案11-04
人教版三年级语文下册备课教案11-07
人教版五年级下册数学教学计划10-31
人教版一年级数学下册教学计划07-06
人教版小学美术教案11-08
数学下册教学总结06-27
人教版初中数学教学设计08-03
小学六年级数学下册教学总结07-08