(优)《最大公因数》教学反思15篇
作为一位优秀的老师,我们需要很强的教学能力,借助教学反思我们可以学习到很多讲课技巧,教学反思要怎么写呢?以下是小编整理的《最大公因数》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
《最大公因数》教学反思1
一、我认为,这节课的闪光点有以下几个方面:
1、在复习的过程中,引导学生复习用多种方法找每个数的因数,丰富学生解决问题的多样性。
2、通过复习、发现、总结,什么是公因数及最大公因数,在研究的过程中交流、总结自己的发现。
3、通过填写集合图,使学生了解集合的思想,并进一步体会公因数和最大公因数的关系。
4、通过练一练活动,引导学生独立发现并总结出:(1)倍数关系的两个数,最大的数就是这两个数的最大公因数;(2)公因数只有“1”的两个数(互质数),它们的最大公因数就是这两个数的乘积。
5、在进一步的练习中,在学生独立解决问题的基础上,让学生说出自己的思考方法,进行集体交流,相互学习,丰富学生解决问题的策略。
二、这节课的不足,有以下几方面:
1、教学过程中,缺少对学生学习情况的评价 特别是鼓励性的评价。
2、教学思想“由一般到抽象”的过程体现的不够明了。
3、 对于教材的`拓展不够深入。
三、改进措施:
1、加强和提高对学生评价的意识,重视评价的功能。
2、在备课时,要清楚把握教学内容的梯度,使教学思想融入教学过程之中。
3、加强对教材的拓展,切实做到以教材为载体,以教学内容为导向,发展学生的数学能力。
《最大公因数》教学反思2
对于本节课,我觉得有以下需要解决和认识。
1.复习寻找因数的方法。
2.联系实际体会学习寻找公因数的必要性。
3.探索寻找2个数的公因数和最大公因数的方法。
4.结合集合方法直观显示公因数和最大公因数。
5.理解学习公因数和最大公因数的意义以及应用。
6.结合短除法寻找最大公因数的方法。(这个在人教版中作为了解,在本课中,我向孩子们了解介绍,但未做要求)
在课上,我以为长16dm宽12dm的.客厅铺上正方形方砖,刚好铺满,能选用集中方砖,这在无形中蕴含这寻找16和12的因数,这样能够孩子们体会寻找公因数的必要性,引起探究欲望。
孩子们有不同的方法和方式去表示公因数的方式,在最后介绍集合方式,在交集中更直观现实公因数,这样更直观的显示,初步渗透集合思想。
学习短除法也为后面教学约分做好先知铺垫,也为孩子们介绍一种寻找最大公因数的简便方法,满足不同水平学生学习的需要。
《最大公因数》教学反思3
“公因数和最大公因数”是第三单元第三课时的内容,在此之前,已经学过了公倍数和最小公倍数,掌握了公倍数和最小公倍数的概念和求法,这节课的教学过程与公倍数的教学非常相似,吸取了公倍数教学时的教训,本节课教学公因数概念的时候,我先让学生读题,说清题意,再进行操作,这样以来学生是带着问题去操作的,不像公倍数时部分学生题目都理解不了就开始动手操作,不能完全达到本题操作的目的。在教学求公因数方法的时候,我也让学生与公倍数求法进行了比较,通过比较学生发现了公倍数是无限的,没有给定范围时要写省略号,而公因数是有限个的,要写好句号,表示书写完成;还发现找公倍数时是找最小公倍数,而找公因数是最大公因数;还发现求公因数的方法中是先找小数的因数再从其中找大数的因数,而求公倍数却是利用大数翻倍法,找出来的是大数的倍数,再从其中找出小数的倍数。不仅两个例题的教学过程相似,连练习的设计也是相似的,所以学生在完成练习的时候,已经对练习的形式较为熟悉,练习完成的较好。正因为两节课太相似,所以小部分学生已经有些混淆了,分不清怎么求公倍数,怎么求公因数,这个是在以后教学中要避免的。
这节课的作业也能反映一些本节课上的问题,在教学公倍数的时候,我没有强调集合中元素的互异性,作业中不少学生在公倍数一栏填写的数字,同时出现在左右部分的集合中,在这节课练习时,我特意强调了这一点,希望学生们能记住,在完成练习五的'时候还发现,部分学生对于2、3、的倍数的特征记得不清楚了,所以在判断是不是它们的倍数的时候还有一些人用大数去除以2、3、5的方法来判断,耽误了很多的时间,这是我上课之前没有想到的,要是在做这一题之前先让学生回忆2、3、5的倍数的特征,想必他们会节省更多的时间。
《最大公因数》教学反思4
1、创设情境引入新知。
我在教学时,改变教材中从单调的计算引出概念的做法,而是创设情景,通过生动有趣的画面,吸引学生积极思维,其特有的感染力和表现力,能直观生动地对学生心理起到催化作用,有效地激发了学生探究新知识的兴趣,使教与学始终处于活化状态。
2、合理利用教材。
“循环小数”是学生较难准确地掌握和表述的一个概念,特别是表述其意义的“从某一位起”、“依次”、“不断”、“重复出现”等抽象说法,学生难以理解。这节课的内容也较多,我打破教材编排顺序,将教学内容重新整合,灵活处理教材,先以王鹏喜欢跑步引入计算400÷75让学生计算发现商中重复出现一个相同的`数字,再以王鹏喜欢游泳引出计算25÷22让学生计算发现商中有两个不断重复出现的数字。从而引导学生发现发现商的特点,引出“循环小数”。这样可以将难点分散,各个击破。
3、引导学生探索,让学生成为真正的参与者。
《数学课程标准》指出:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”数学学习不应是简单个体接受知识的过程,而是一个主体对自己感兴趣的且是现实的生活性主题的探究与发展的过程。在新课中,我首先从生活中的现象入手,再引导学生主动探究数学中的问题,通过让学生选择自己感兴趣的信息试算、观察、分析、比较、讨论等学习方式充分调动学生多种感官的参与,给学生提供自主合作探究的空间,让学生全面参与新知的发生、发展和形成过程,使学生真正体验到探究的乐趣和做数学的价值。
当然,在这节课中也有很多不足之处。如我在教学中过多地注意预设,使教学放不开手脚,环节安排趋于饱和,这样压缩了学生思维空间,在今后的教学中,特别是环节预设应在于精、在于厚实。
《最大公因数》教学反思5
本课是在学生掌握了因数、倍数、找因数的基础上进行教学,通过找公因数的过程,让学生懂得找公因数的基本方法。在此基础上,引出公因数和最大公因数的概念,为了加深理解,可以进一步引导学生观察分析、讨论,让学生明确找两个数公因数的方法,并对找有特征的数字的最大公因数的特殊方法有所体验。在此过程中要注意鼓励每一个学生参与探索,重视引发学生思考,注重学生间的交流,让学生用自己的语言表述自己的发现,但不要归纳成固定的.模式让学生记忆。对于找公因数有困难的学生,教师要从方法上作进一步指导。《数学课程标准》指出:“学生是学习的主人,教师是数学学习的组织者、引导者与合作者。”在本节课中,我努力将找最大公因数的概念教学课,设计成为学生探索问题,解决问题的过程,这样设计各个环节的教学流程,体现了教师是组织者——提供数学学习的材料;引导者——引导学生利用各种途径找到公因数,最大公因数;合作者——与学生共同探讨规律。在整个教学的过程中,学生真正成了课堂学习的主人,寻找最大公因数的方法是通过学生积极主动地探索以及不断地中验证得到的,所以整节课学生个性得到发挥,课堂成了学习的天地。
《最大公因数》教学反思6
本节课的教学内容是求两个数的公因数和两个数的最大公因数的第二课时。教学目标是进一步理解两个数的公因数和最大公因数的意义,比较熟练地求出两个数的最大公因数,包括两种特殊情况。这节课上的非常顺利,课堂气氛活跃,师生互动和谐,取得了较好的课堂教学效果。
上课的第一环节,是复习两个数的公因数和最大公因数的意义。在复习的过程中,我不是单纯地让学生复述两个数的公因数和最大公因数的意义,而是让学生举例说明。学生说出了许多组数,找出了它们的公因数和最大公因数。在学生举例的过程中,对它们的'意义有了更深的理解。我择其四组板书在黑板上:4和5,5和6,5和7,7和9。让学生观察,这四组数有什么特点。我的本意是让学生发现两个数的最大公因数的一种特殊情况,即两个数的公因数只有1,那么它们的最大公因数就是1。 “我发现两个数中只要有一个质数,它们的最大公因数就是1。”这是一个大胆的猜测,虽说是出乎意料,但更使课堂充满了生机。我让学生判断他的观点是否正确。在小组讨论的过程中,有学生提出了质疑,“这个观点不对,比如2和4,2是质数,但它俩的最大公因数不是1。”又有学生提出3和6,5和10等。我接着又让学生观察,这几组数又有什么特点。通过通论观察,完成了本节课的另一个教学任务,发现了两个数的最大公因数的另一种特殊情况,即两个数是倍数关系,那么它们的最大公因数就是较小的数,学生发现了两个数的最大公因数的几种情况,当两个数都是质数时,它们的最大公因数是1;当两个数是连续的自然数时,它们的最大公因数是1;两个数的最大公因数是1,这两个数可以是质数,也可以是合数,还可以一个是质数,一个是合数,等等。
《最大公因数》教学反思7
教学 例3时先用边长6厘米和4厘米的正方形纸片,分别铺长18厘米、宽12厘米的长方形,教师选择正方形纸片铺长方形的活动教学公因数,是因为这一活动能吸引学生发现和提出问题,能引导学生思考。学生用同两张正方形纸片分别铺一个不同的长方形,面对出现的两种结果,会发现“为什么有时正好铺满、有时不能”,“什么时候正好铺满、什么时候不能”这些有研究价值的问题。他们沿着长方形的边铺正方形纸片,就会想到正好铺满与不能正好铺满的原因可能和边长有关,于是产生进一步研究长方形边长和正方形边长关系的愿望。分析长方形的长、宽和正方形边长之间的关系,按学生的认知规律,设计成两个层次: 第一个层次联系铺的过程与结果,从长方形的长、宽除以正方形的边长没有余数和有余数的层面上,体会正好铺满与不能正好铺满的原因。第二个层次根据边长6厘米的正方形正好铺满长18厘米、宽12厘米的长方形、而边长4厘米的正方形不能正好铺满长18厘米、宽12厘米的长方形的经验,联想边长几厘米的正方形还能正好铺满长18厘米、宽12厘米的长方形。先找到这些正方形,把它们边长从小到大排列,知道这样的正方形的个数是有限的。再用“既是12的.因数,又是18的因数”概括地描述这些正方形边长的特征。显然,前一层次形象思维的成分较大,思考难度较小,对后一层次的抽象认识有重要的支持作用。
反思:突出概念的内涵、外延,让学生准确理解概念。
我用“既是……又是……”的描述,让学生理解“公有”的意思。例3先联系用边长1、2、3、6厘米的正方形正好能铺满长18厘米、宽12厘米的长方形纸片的现象,从长方形的长、宽分别除以正方形边长都没有余数,得出正方形的边长“既是12的因数,又是18的因数”,一方面概括了这些正方形边长的特点,另一方面让学生体会“既是……又是……”的意思。然后进一步概括 “1、2、3、6既是12的因数,又是18的因数,它们是12和18的公因数”,形成公因数的概念。
由于知识的迁移,学生很容易想到用集合图直观形象地显示公因数的含义。第27页把8的因数和12的因数分别写到两个集合圈里,这两个集合圈有一部分重叠,在重叠部分里写的数既是8的因数,也是12的因数,是8和12的公因数。先观察这个集合图,再填写第28页的集合图,学生能进一步体会公因数的含义。概念的外延是指这个概念包括的一切对象。
运用数学概念,让学生探索找两个数的最大公因数的方法。
例4教学求两个数的最大公因数,出现了两种解决问题的方法。学生有的先分别写出8和12的因数,再找出它们的公因数和最大公因数。有的在8的因数里找12的因数,这样操作比较方便,但容易遗漏。我有意引导学生选择第一种。练习五的第3题就是这种方法的应用。
充分利用教育资源,自制课件,协助教学。
限于操作的局部性,我认真制作了实用的课件,让直观、清晰的页面直接辅助我教学,学生表现积极,课堂气氛比较活跃,提问、释疑、解惑,练习的热情很高。
本课设计目的是使学生学习公因数、最大公因数的意义,并学会找两个数的最大公因数的方法,从整节课学生表现情况和课后作业反馈来看,学生对本部分知识知识掌握较好,学习积极并具有热情,就实效性讲很令人满意。
《最大公因数》教学反思8
【多问几个为什么】
1、出差两天,今日回来,与孩子们继续畅游《公倍数和公因数》单元。
思维一旦被激发,就有点一发不可收拾。
从第一课时开始,孩子们与我是完全浸润在了公倍数与公因数的欢乐中。我的态度也从一开始对教材安排的质疑,到现在极力拥护教材的安排。
只有放手给孩子们一个构建的机会,孩子们才能在构建过程中频频发起智慧的邀请。
在学习公倍数的时候,课上巧遇“思维定势”,孩子们以为两个数的公倍数就是它们的乘积;但是在解决书本上的6和9的公倍数是多少时,猛然发现,这个方法不能次次实施。孩子们提出了一系列猜想。其中小彧发现,如果将错就错,把6和9相乘,也可以,但是要除以它们的最大公因数。并且,小彧通过举例,把这个发现从特殊上升到了一般。
因为当时还未学习公因数,我就躲避了问题的内里。
小何在备学中说,我最大的问题是,我知道小彧的说法是对的',但是为何6和9两个数相乘,再除以最大公因数,得到的就是最小公倍数,其中的道理是什么?
呵呵,好家伙,知道了是什么,自觉追问了为什么?
明天我们要对本章节的内容做个整体梳理,我准备结合短除法,让孩子们意识到小何追问思想的可贵,以及这个方法可行之处究竟是什么。
2、孩子们很爱思考,从第一课时的下课时间开始,就发现两个数若有倍数关系,它们的最小公倍数很奇妙,就是较大的数。
第二课时,我们通过教材上的习题,一起说了这个规律,即诉说了看到的表面现象。
孩子们还不甘心,提出了问题,为什么两个数是倍数关系,最小公倍数就是大的那个数呢?
一时安静后,好几个孩子举高手,并说清了原因:大数本身是小数的倍数,大数又是自己最小的倍数,理所应当是两数的最小公倍数。
3、公倍数的种种猜想,在学习公因数的时候,思想方法得到了迁移。
第一课时,孩子们提出各种猜想,求最大公因数,会不会也像公倍数中两个数有特殊关系,就能轻松的求出结果?
【孩子们+数学=好玩。】
要做找公倍数的上本子作业了,我板书给孩子们看书写格式,他们拉着脸。
我说,我小时候,就是写这么多字的。不过,我可以介绍你们写一种简单的,用“【】”包住两个数,中间用逗号隔开,这样就能代替写这么多字。孩子们一看,多方便呀!居然都“啪啪啪”鼓起掌来,哈!
我满怀惬意的说,你们的掌声与微笑中包含着对数学简洁美的追求啊!
孩子们爽歪歪了。
不过事后,一个资深老师告诉我,这个环节,如果让孩子们创造一下,如何追求简洁。也许,这样对于孩子们的思维发展更有效。一想,我也同意这般。
一节课,只要知识目标达成,那么,过程方法与情意目标是不可分割的。学生在达成过程方法目标的旅程中,岂有不快乐,不感受到丰富体验的?
《最大公因数》教学反思9
分析基础知识:本单元是在学生已经理解和掌握倍数、因数的含义,初步学会找一个数的倍数和因数,知道一个数的倍数和因数的特点的基础上进行教学的。这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和通分以及分数四则计算的基础。教材分两段安排教学内容:第一段,认识公倍数、最小公倍数,探索找两个数的最小公倍数的方法;第二段,认识公因数、最大公因数,探索找两个数的最大公因数的方法。此外,在本单元的最后还安排了实践与综合应用《数字与信息》。
一、借助操作活动,经历概念的形成过程。
以往教学公因数的概念,通常是直接找出两个自然数的因数,然后让学生发现有的因数是两个数公有的,从而揭示公因数和最大公因数的概念。本单元教材注意以直观的操作活动,让学生经历公因数和最大公因数概念的形成过程。这样安排有两点好处:一是学生通过操作活动,能体会公倍数和公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。在这节课上,让学生按要求自主操作,发现用边长6厘米的正方形正好铺满长18厘米,宽12厘米的`长方形。在发现结果的同时,还引导学生联系除法算式进行思考,对直观操作活动的初步抽象。再把初步发现的结论进行类推,发现用边长1厘米、2厘米、3厘米6厘米的正方形都正好铺满长18厘米,宽12厘米的长方形。在此基础上,引导学生思考1、2、3、6这些数和18、12有什么关系。这时揭示公因数和最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。并在此基础上,借助直观的集合图显示公因数的意义。实实在在让学生经历了概念的形成过程,效果较好。
二、预设探究过程,增强学生主体意识。
例3中,教师宣布游戏规则后,放手让学生动手操作,直观感知——思考原因——想象延伸——讨论思辨——明确意义。例4更是学生探究广阔的平台,教师抛出问题后,让学生独立探究。为了解决问题,学生充分调动了已有知识经验、方法、技能,八仙过海各显神通,找出了各种求“12和18的公因数和最大公因数”的方法。在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识,也充分体现了教师驾驭教材,调控学生的能力。
三、重视方法和策略的渗透,提高学生学习能力。
课程标准只要求在1~100的自然数中,能找出10以内两个自然数的公倍数和最小公倍数,二是只要求在1~100的自然数中,能找出两个自然数的公因数和最大公因数,而不是用分解质因数的方法求出公倍数或公因数。不教学用分解质因数的方法求最小公倍数和最大公因数还有两个原因:一是通过列举出两个数的倍数或因数的方法,找出公倍数或公因数。突出对公倍数和公因数意义的理解;二是学生对用短除的形式求最大公因数和最小公倍数的算理理解有困难,减轻学生的学习负担。所以在教学找公倍数或公因数时,应提倡思考方法多样化。例4教学中,学生得出了三种方法来寻找12和18的公因数和最大公因数。(当然到底是三种还是两种有待商榷,不过在这里,为了便于比较我们姑且称之为三种吧)这就存在了一个方法优化的过程,哪一种方法会更简单?通过对比,大多数学生赞同方法二。通过讨论,引导学生以后解决此类问题时可以多运用较好的方法二。在这中间教师注意到了引导、小结、鼓励,师生共同得出结论。
复习题中回顾了四年级知识基础、列举法和标记法,在例3中,学生思考“还有哪些边长整厘米的正方形纸片也能正好铺满这个长方形?”时就有了基础。例4中,学生也知道用列举法和标记法来解决问题。
特别是用集合图来表示因数和公因数的教学值得一提。有趣的游戏,预料中的争执,恰到好处的体现了图的妙用,图的填法比一步步教学生如何填更有效,也更不易遗忘。练习五,第一题在填完集合图后对公有因数和独有因数意义的的提升,为下面的学习作了伏笔。体会初步的集合思想。
练一练,并没有局限于画画△、○,找找公因数和最大公因数,而是进一步指导学生观察,发现公因数都比小的数小(18和30中,18是小的数),在18的因数中找公因数的确更快、更好些。
所以请老师们在平时的教学中也去分析、思考,把握例题和练习中每个需要提升之处,在课堂中时时注意方法和策略的渗透,较好地用实这套教材。
《最大公因数》教学反思10
《两三位数除以一位数》商是两位数是在学生学习了商是三位数和有余数除法的基础上进行的,它是学习除数是多位数除法的基础。因此要在引导学生解决具体问题的过程中,切实理解算理,掌握计算方法。
1、联系旧知,激发兴趣
本节课我有意识的在一开始设计了抢答环节,让学生判断大屏幕上几道题目的商的位数,进而发现不同,激发兴趣,引入本节课的学习。从效果上看,学生在判断的过程中比较感兴趣,并能初步感受与旧知的联系与不同,达到了预期的目的。
2、放手学生,设置大问题
本节课我在这方面做的不好。在摆小棒理解算理环节,我领的比较多,学生和老师一问一答,比如:“先分什么?再分什么?每份是多少”等,虽然学生最后也弄明白了该如何分小棒,但学生的能力没有得到提高。在于老师的'建议下,在重建设计中,我会注意放手,设置大问题。比如:“请同学们看着大屏幕上的小棒,想一想应该怎样分呢?先自己想一想,然后同桌交流一下。”让学生带着问题思考,在思考中考虑摆小棒的全过程,而不是想一开始那样,思路被割裂开了。之后再全班交流,教师也可适当引领点拨,但这和我之前的设计感觉就不一样了,后者更能体现学生主体地位。在这方面,我今后还应提高意识,不断实践。
3、设计新颖的练习题,增多练习内容。
计算教学,单纯的让学生计算势必会使学生产生厌倦。我联系学生实际和生活实际,设计出多种多样的练习题,比如:计算之后让学生思考问题“想一想:三位数除以一位数,什么时候商是三位数,什么时候商是两位数?”或让学生“火眼金睛”辨别对错,或让学生在解决实际问题中说一说先算什么再算什么,感受解决实际问题的一般环节,将思路渗透到日常教学中,或在最后让学生根据所学再来一组比赛等,结合学生不同的计算阶段提出不同的要求和练习形式,使单调枯燥的计算练习变得生动有趣,达到了较好的教学效果。
我将以本次讲课为契机,在今后的教学中应用本次活动学到的知识,加以实践,不断提高自身的教学水平。
《最大公因数》教学反思11
公因数和最大公因数这一课应注重引导学生体验“概念形成”的过程,让学生“研究学习”、“自主探索”,学生不应是被动接受知识的容器,而应是在学习过程中主动积极的参与者,是认知过程的探索者,是学习活动的主体。
我是这样组织教学的:
在教学过程中,我们不仅要求学生掌握抽象的数学结论,更应注重学生概念形成的过程。应引导学生参与探讨知识的形成过程,尽可能挖掘学生潜能,能让学生通过努力,自己解决问题,形成概念。通过创设生活情境,帮助王叔叔铺地装,将学生自然地带入求知的情境中去,在学生已有知识经验的基础上放手让学生去交流、探索。“哪一个正方形纸片能正好铺满长16厘米宽12厘米的长方形,为什么?”这样更利于培养学生自主探索、提出问题和解决问题的能力。接着进一步引导学生思考“还有哪些正方形纸片也能正好铺满长16厘米宽12厘米的长方形?”“为什么边长是1厘米、2厘米、4厘米的地砖可以正好铺满?而边长是3厘米的正方形地砖不能正好铺满?”让学生在反复地思考和交流中加深对公因数这一概念的理解。
教师抛出问题后,让学生独立探究。为了解决问题,学生充分调动了已有知识经验、方法、技能,找出“16和12的公因数和最大公因数”。在这个过程中,由学生自己建构了公因数和最大公因数的.概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识。
思考:
1.增强师生和生生之间的互动
在教学过程中各个环节的衔接不够紧凑,本课时的教学内容比较枯燥,在课堂上如何调动学生的积极性,活跃课堂气氛,使学生学的轻松、扎实。今后的教学中,在这一点上要都多下功夫。本课时的教学中,在组织学生交流找“16和12的公因数”的方法时,指名回答的形式过于单调,有的同学没有选着摆一摆的方法,而是直接用边长去除以小正方形边长来判断,我没有很好利用学生生成的资源,帮助学生理解,局限学生的思维发展。
2.方法多样化和方法优化
在组织学生进行交流时,应该注重引导学生有层次地介绍各种不同的方法。同时还要引导学生进行方法的比较和优化。
《最大公因数》教学反思12
这节课是在学习了公因数和最大公因数之后教学的,在实际教学中我发现学生不能灵活利用最大公因数的知识解决实际问题,有的同学一看到求最大、最多、最长是多少,便不假思索,直接求它们的最大公因数,至于为什么是求最大公因数,有的同学不理解,或是知其然而不知其所以然。基于此,我设计了这节课。在教学中,我努力做大了以下几点:
1、借助操作活动,让学生形成解决问题的策略。在教学中,我以学生感兴趣的六一节活动贯穿始终,让学生在积极、欢愉的氛围中学习。通过给学生提供具体的材料,让他们利用已有的材料,剪一剪、画一画、折一折、想一想、算一算,用不同的方法来解决问题。从动手操作中理解要解决这个问题,实质上是求已知数量的最大公因数,并结合课件演示明确为什么是求最大公因数。提升了学生的思维层次。再通过后面的尝试应用,练一练,灵活应用等环节进一步明确思路。学生在解决问题的过程中获得感悟,初步形成解决此类问题的策略。
2、预设探究过程,增强学生的.主体意识。尝试应用环节更是学生自主探究的广阔平台,我抛出问题后让学生独立探究。为了解决问题,学生充分调动已有知识经验、方法、技能,八仙过海各显神通,找出各种求正方形的边长最长是多少的方法,从中再次体验到要解决这个问题实质上还是求已知数量的最大公因数。整个教学过程学生能主动的建构知识,而不是简单模仿,充分体现了学生是课堂学习的主人,课堂是学生学习的天地。
3、教学中我充分发挥小组合作学习能力,给学生充分的交流与研究时间,让学生在交流展示中明确解决此类问题的策略,达到把复杂的问题变得简单,把简单的问题变得有厚度。
《最大公因数》教学反思13
一、,找一个数的因数
要成对找,这在教学因数时就是一个难点。
二、教学例题3时,应先组织学生大胆猜测:“哪种纸片能正好铺满这个长方形?”再让学生实践验证。
猜测、验证的过程是学生进行探究活动的必要途径。在实践验证的过程中,我紧扣用边长( )厘米的正方形铺长方形,能铺( )层,每层铺( )个。并与其中有两种正方形不能正好铺满长方形的情况作比较,组织学生交流:“怎样的正方形才能正好铺满这个长方形?”由于前面铺垫充分,学生很顺利地得出了结论。例题3的教学, “哪种哪种纸片能正好铺满这个长方形?”“还有哪些边长整厘米数的正方形能正好铺满这个长方形?”“任何两个数的公因数个数都是有限的吗?”将学生的'思维一步步引向深入,就能激发学生自主探究的热情。
三、教学例4时,应充分放手让学生探索8和12的公因数以及最大公因数。
交流中,应充分肯定学生的方法,学生在交流中出现问题时,应让他们自我修正,自我完善。并对四种方法进行比较“看哪种方法更便捷”。最大公因数的概念也要通过练习,让学生自己谈对最大公因数的感悟。
《最大公因数》教学反思14
本节课,我从学生已有的知识和经验出发,精心设计一个童话情境,激发了学生的学习欲望。先让学生动手操作、自学讨论,帮助王叔叔选择地板砖。再思考探索正方形地板砖的边长与长方形地面的长、宽之间的关系。然后用问题的形式,通过复习16和12的因数,让学生再找两个数的因数、找两个数的公有的因数、找两个数公有的因数中最大的因数的过程中,发现用边长1厘米、2厘米、4厘米的正方形都正好铺满长16厘米,宽12厘米的长方形。在此基础上,引导学生思考1、2、4这些数和16、12有什么关系,同时揭示公因数和最大公因数的概念。
总之,我在教学的过程中,不但复习巩固旧知,让学生在不知不觉中学会了新知。而且还让学生带着自己的数学现实参与数学课堂,不断地利用原有的经验背景对新的问题做出解释。此过程中我还注意了鼓励每一个学生参与探索,重视引发学生思考,注重学生间的交流,让学生用自己的语言表述自己的发现,对于有困难的'学生,我从方法上作进一步指导,小组长帮助,生生互帮等。以“学生是学习的主人,教师是数学学习的组织者、引导者与合作者为主。培养了学生动手操作的能力,使他们在愉快的学习氛围中学会了本节课的内容。
《最大公因数》教学反思15
《最大公因数》这部分内容是在学生掌握了因数概念的基础上进行教学的,主要是为学习约分做准备。《最大公因数》被安排在分数的意义这一单元内,与以前的老教材有很大的区别。
一、借助操作活动,经历数学概念的形成过程
以往教学公因数的概念,通常是直接找出两个自然数的因数,然后让学生发现哪些因数是两个自然数公有的,从而去揭示公因数和最大公因数的概念。而新教材注意以直观的操作活动为主,主题图中出现的是一幅铺地砖的画面,从而去创设给贮藏室地面铺地砖的情境。
这样安排有两点好处:一是学生通过操作活动,能体会公倍数和公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。在这节课上,让学生按要求自主操作,通过小组合作,去铺格子图,发现用边长1厘米、2厘米、4厘米的`正方形正好铺满长16厘米,宽12厘米的长方形,但是用边长3厘米的正方形能把宽12厘米铺完,但是不能正好铺完长16厘米,在此基础上,引导学生思考正方形的边长既要是长方形长的因数,也要是宽的因数。这时揭示公因数和最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。并在此基础上,通过数字卡的游戏,借助直观的集合图显示公因数的意义。实实在在让学生经历了概念的形成过程,效果较好。
二、找两个数的公因数,提倡思考方法的多样化。
以前的教材中安排的是利用短除法找最大公因数,现在的教材则是采用列举法,所以我在教学这部分知识时,把重点放在找两个数的公因数的方法上来,鼓励学生找最大公因数方法的多样化。从教材的练习设计出发,让学生寻找其中的规律,特殊情况下找两个数的最大公因数是有规律的:
(1)当两个数是倍数的关系时,小的数就是这两个数的最大公因数。
(2)当两个数是互质数时,这两个数的最大公因数是1。
不是特殊的情况时,如教学“找18和27的最大公因数”时,学生运用最普遍的方法是分别列举出18和27的因数,再在因数中圈出它们的公因数;这时适时引导你还有更简单的方法吗?引导学生去发现可以在18的因数中直接圈出27的因数,也可以直接运用短除法去发现。再在学生感悟、理解的基础上,进行方法的优化。一开始的时候,老师们商量还是遵循教材的意图,既然新教材没有讲到短除法,我们只是介绍,不重点掌握,但是作业出来后,老师们发现,有的学生首先连因数都找不全,既是找全了,也没有找出最大的公因数,在这种情况下,看来教学短除法还是非常有必要的!
三、课后反思:
这节数学课我的感受很深:第一、新教材的优势,有利于培养学生的数学抽象能力。例1的引入概念与原教材不同例题前创设了铺地砖的问题情境,由实际生活抽象出概念而不是利用直观教具和学具引入概念。这样处理的好处是便于揭示数学与现实世界的联系、有利于学生理解公因数、最大公因数概念的现实意义、有利于培养学生的数学抽象能力。第二、相信学生是最棒的!第三、小组学习要给学生充分的交流与研究的时间。第四、教师要引导学生自己去探索、去发现,精心设计情境和问题,使学生充分展开思维活动空间,在问题的发现过程,方法的总结过程发展思维能力。
【《最大公因数》教学反思】相关文章:
《最大公因数》教学反思07-24
《公因数和最大公因数》的教学反思05-21
(集合)《最大公因数》教学反思15篇10-19
最大公因数教学设计04-12
《最大的“书”》教学反思(推荐)07-06
《最大的“书”》教学反思15篇06-26
《最大的书》教学设计05-17
最大的书说课稿12-30
《最大的麦穗》教案10-27