《植树问题》教学设计

时间:2024-05-21 16:33:06 教学设计 我要投稿

《植树问题》教学设计

  作为一位优秀的人民教师,往往需要进行教学设计编写工作,编写教学设计有利于我们科学、合理地支配课堂时间。那要怎么写好教学设计呢?以下是小编帮大家整理的《植树问题》教学设计,仅供参考,欢迎大家阅读。

《植树问题》教学设计

《植树问题》教学设计1

  教学目标:

  1.认识棵数,知道什么是间隔数、。

  2.理解在线段上植树(两端都栽)的情况中“棵树=间隔数+1”的关系。

  3.能将植树问题推广到生活中的其他问题,学会通过画线段图来分析题意。

  教学重点:

  探究植树的棵数和间隔数之间的关系,并能用发现的规律解决实际问题

  教学难点:

  灵活运用“两端都栽”情况下植树的棵数和间隔数之间的规律解决生活中的实际问题

  导学指要:

  1.通过五指初步感知棵数与间隔数之间的关系,理解间隔、间隔数、间距的含义。

  2.通过老师用画线段的方法模拟种树情境理解解决问题的方法,再采用合作学习的方式利用学具摆、数、画等方法,进一步明确棵数与间隔数之间的规律。

  3.学习植树问题在生活中的运用。

  教具:课件一套学具9套自学提示卡一张

  预设教学流程:

  一、创设情境生成学习目标

  1、教学“间隔”定义

  师:我们班在各方面都十分优秀,俗话说的好:耳听为虚、眼见为实,今天让来听课的'老师也看看我们班的风采好吗?

  生:好

  师生问好

  师:我们人有两件宝贝,是双手和大脑,今天这节课,我们就要用到这两样宝贝,动脑去思考:手与我们这堂数学课有什么关系呢?手上有哪些数学问题呢?好,现在我们就去探讨。

  师:请你伸出你的右手,观察你有几根手指?几个手指缝?它们存在什么样的关系呢?

  生:……………………

  师:减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的关系呢?

  生:……

  师:再减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的关系呢?

  生:……

  师:通过刚才的观察,想一想,手指和手指缝之间存在着怎样的关系呢?

  生:……手指比手指缝多1,手指缝比手指少1。

  师:这两根手指之间的手指缝,用数学语言来说就叫间隔,间隔的个数就叫间隔数。

  板书:间隔数

  2、在生活中找间隔

  师:和你的同桌说说:什么是间隔数?

  生:……

  师:我们再来体验,请一排的前三名同学站起来,这一排同学有多少个间隔?

  生:…………….

  师:请这一排的前四名同学站起来,用你们的手指告诉老师,这一组同学的间隔数是多少?

  生:……………

  师:今天将利用数学知识来解决“植树问题”。

  板书课题:植树问题

  二、探究规律实现目标

  1、多媒体出示学校操场

  A师:这里是哪里?

  学校打算在100米的跑道上植树,来美化我们的学校。可不是随便种的哦,学校可是有要求的。

  出示例题1:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?、

  师:读一读,在题中你读到哪些信息?谁来说一说?

  生:……………………

  师:全长100米表示什么?每隔5米栽一棵表示什么意思?一边表示什么?

  师:什么是两端都要栽?

  生:……………………..

  (此环节要全方位理解题意)

  师:今天这节课我们重点来研究两端都栽的植树问题,板书:两端都栽

  师:题目都理解了,请大家动笔尝试算一算,一共需要多少棵树苗?

  B生动笔算

  师:谁来说说你是怎样列式的?

  生:……..

  板书:100÷5=20xx+1=21(棵)

  100÷5=20xx+2=22(棵)

  100÷5=20xx+1=21(棵)

  21x2=42棵

  师:学校可犯糊涂了,有这么多种结果,到底该买多少棵呢?接下来我们来验证下吧

  请同学们利用画一画,数一数,算一算,到底该买多少棵树苗?

  C学生小组合作,教师巡视,并有目的的选取学生

  D在实物投影上展示学生的作品

  学生展示并板演

  用画线段的方法解决的棵数与间隔数的关系

  反馈黑板上的题目,注意利用错误资源教师提问:100÷5=20求的是什么?为什么还要加1呢?

  2、再次课件演示得出结论

  那你们获得的结论是什么呢?在两端都栽的情况下棵数与间隔数之间有什么关系呢?

  棵数=间隔数+1

  师小结:

  你们真了不起,你们发现了植树问题中非常重要的一个规律棵数=间隔数+1

  3、应用规律解决问题

  师:应用这个规律,我们来解决在一条全长100米的小路一边植树,每隔4米栽一棵,(两端都栽)一共需要多少棵树苗?

  在一条全长1000米的小路一边植树,每隔5米栽一棵,(两端都栽)一共需要多少棵树苗?

  生:……………

  师:同学们真的很了不起。通过把复杂的问题简单化,发现了“两端都栽”求棵数的解题规律,你们能够独立解决植树问题了吗?

《植树问题》教学设计2

  教学目标:

  1、感受“植树问题”在生活中的广泛应用,并能用此方法解决简单的实际问题。

  2、学会从实际问题中探索规律,找出有效解决问题方法的潜力。

  3、透过生活的事例,初步体会“植树问题”的思想方法。

  教学难点:运用“植树问题”的解题思想解决实际问题。

  教学重点:参与探索并发现“植树问题”的解题规律。

  教学准备:练习纸、课件

  教学过程:

  一、谈话引入,揭示课题

  师:同学们,你明白我们这天要学习什么资料吗?

  生:植树问题

  师:你们是怎样明白的哦?

  好,这天我们就来研究植树中的问题。植树问题中蕴涵着许多搞笑的数学问题。你们喜不喜欢?

  板书课题:植树问题

  出示学习目标:

  二、操作感悟,探究规律

  1、请看大屏幕:

  (1)想一想:

  那里有一条线段,我们把它看作一条路,这条路长20米,如果要在这条路上种树,请同学们想一想,你们还要了解什么信息?

  ①每棵树之间相隔几米?(间隔)②是不是两端都种呢?……看来同学们思考问题还很全面呢!

  (2)猜一猜:

  如果告诉你每隔5米种一棵,种几棵比较适宜?

  生1:5生2:4生3:3

  (3)画一画:

  师:那么,有什么办法验证你的想法?(画图)

  哦,你能不能用简单的示意图把你的想法简单地画出来呢?

  (教师先介绍画树的方法,学生画图,教师巡视)看谁画得又对又快。

  2、展示、汇报

  ①选一学生的示意图展示、汇报。

  两端都种:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上

  ②选另一学生的示意图展示、汇报。

  只种一端:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上

  ③选另一学生的示意图展示、汇报。

  两端都不种:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上

  3、写算式

  师:我们刚才用图来表示的思维过程能不能用个算式来表示?

  ①只种一端:你是怎样想的呢?谁能来说一说。

  20÷5=4(段)=4(棵)

  棵数和段数一一对应。

  ②两端都种:20÷5+1=5(棵)

  20÷5表示什么?加“1”是什么意思?

  ③两端都不种:最后一种用算式怎样表示呢?20÷5-1=3(棵)

  每间隔5米是这样的,假如每间隔是2米,分别能种几棵呢,列出算式(不要画图了,要画就画在脑子里)

  20÷2+1=11(棵)20÷2=10(棵)20÷2-1=9(棵)

  4、小组讨论:

  我们刚才在这条20米的路上,每间隔5米和每间隔是2米分别种多少棵树都做了,仔细看看,你们有什么想说的?先独立思考,想好后再和同学交流,然后向老师汇报。(告诉你总长度、间隔长,要你求种多少棵树,是否有简单的方法?)

  5、教师引导学生总结:

  ①只种一端:棵数=段数

  ②两端都种:棵数=段数+1③两端都不种:棵数=段数—1

  那么段数(间隔数)怎样求呢?

  所以解决植树问题,首先要确定它是怎样种的?是两端都种、只种一端还是两端都不种,再分别根据以上数量关系来解决就能够了。

  6、象这样,这天用植树问题这样的`思考方式来思考的,平时生活当中的问题还是否有?(摆花、锯木头、站队……)

  师:老师也收集了一些图片,看看那里有植树问题吗?

  (根据学生的回答教师出示课件,并说明为什么属植树问题)

  三、活学活用,解决问题

  师:我们刚才透过猜测、验证、推理,摸索了植树问题中的一些规律,我们能不能应用这些规律来解决生活中的实际问题呢?

  (一)基本练习:我能行!

  1.从头至尾栽了10棵树,那么有个间隔。

  2.一根木头长8米,每2米锯一段。一共要锯次。

  好,两道题都做对的对老师笑一笑。哇!我从同学们灿烂的笑脸中读出了自信,读出了自信!老师为你们加油!

  (二)综合练习:我挑战!

  1、林木工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  ①6×36=216(米)

  ②6×(36-1)=210(米)

  ③6×(36+1)=222(米)

  2、一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

  ①10÷5=2(米)2×8=16(分钟)

  ②5×8=40(分钟)

  ③(5-1)×8=32(分钟)

  3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  ①12÷1=12(个)

  ②12÷1+1=13(个)

  ③12÷1-1=11(个)

  (三)拓展练习:我智慧!

  四、再次梳理,总结提高

  这天我们学习了什么资料?你有什么收获?你有什么感受?

《植树问题》教学设计3

  教学目标:

  1、知识与技能:通过合作探究,动手实践,让学生在做数学的过程中经历由现实问题到构建数学模型的过程,理解并掌握植树棵数与段数之间的关系。

  2、过程与方法:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、初步探究、合作交流的能力,并培养学生针对不同问题的特点灵活解决问题的能力。

  3、情感态度价值观:让学生在探索、构建模型、用模型的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。

  教学重难点:

  引导学生在观察、操作和交流中探索并发现段数与棵数的规律。并能运用规律解决实际的问题。

  教学准备:课件,纸条,小刀。

  教学过程:

  课前热身:

  师:在上课之前,老师了解了一下,发现我们班很多同学都喜欢唱歌,现在离上课还有一点时间,我们一起来唱《幸福拍手歌》好吗?(播放课件视频,齐唱。)

  师:如果感到幸福你就拍拍手,是双手创造了我们幸福的生活。老师也相信,只要我们在用双手辛勤地创造着,就一定会收获到幸福,今天我们就一起用双手去创造,去收获。

  一、创设情境,生成问题。

  1、猜谜激趣。

  师:同学们喜欢猜谜语吗?我现在要给同学们出一个哑语,谜底是一个成语,同学们看仔细。(师找一个学生配合,用小刀切断纸条。)

  生:一刀两断。

  教师板书:1刀2段,并画出线段图表示。

  师:切两刀呢?(生猜测,师演示,指名画线段图)

  学生回答:三刀呢?五刀呢?(自己画出线段图验证。)100刀呢?

  师:你发现了什么规律?

  学生说,教师板书:刀数=段数-1。

  2、提出问题。

  师:同学们真聪明,可以帮我一个忙吗?出示设计要求:

  在操场边,有一条20米长的.小路,学校计划在小路的一边种树,请按照5米一棵的要求,设计一份植树方案。

  师:从这份要求上,你能获得哪些信息?

  (20米长的小路,一边,每隔5米种一棵。)

  师:每隔5米是什么意思?

  (每两棵树之间的距离是5米,每两棵树之间的距离相等。)

  二、探索交流,解决问题。

  1、设计方案,动手种树。

  师:了解了已知条件,请同学们以同桌为一个小组,设计一份植树方案。可以用这条线段代表20米的小路。(师课前给学生准备画有20厘米线段的纸张)用你们喜欢的图案表示树,把你们设计的方案画一画。(小组活动)

  2、反馈交流。

  师:很多小组都已经完成了,先请同学们来说一说,根据你们的方案,需要种几棵树?(5棵,4棵,3棵)

  师:为什么同样的一段路,同样的要求,种的棵数却不一样呢?你们的方案分别是怎样的?来展示一下你们的设计方案。(小组展示设计方案,交流设计思路)

  师:这三种设计方案是不是都合理呢?怎样来检验一下?(参照设计要求,检验设计的合理性。)既然都合理,比较一下,这三种方案的相同点是什么?

  生:两棵树间的间隔都一样,他们的间隔个数都相同。

  师:那它们的不同点又在哪里?

  根据学生的回答板书:

  (1)两端都栽。

  (2)只栽一端。

  (3)两端都不栽。

  师:就一个要求,同学们就能设计出这么多不同的方案,真有创造力!看来你们都有成为环境设计师的资格。

  3、合作探究,总结规律。

  师:刚才我们借助借助线段图,找到了刀数与段数的关系,回忆一下刚才的方法,你能不能用同样的方法,去探究一下棵数与段数的关系?

  小组合作探究,教师巡视指导。

  4、交流规律。

  小组汇报,其他小组补充。教师根据汇报情况板书:

  两端都栽:棵数=段数﹢1

  只栽一端:棵数=段数

  两端都不栽:棵数=段数-1

  5、验证规律。

  师:我们再用线段图验证一下我们发现的规律。

  (1)画一条18厘米长的线段,两端都种,每隔3米种一棵,几段几树?

  (2)画一条20厘米长的线段。只种一端,每隔2米种一棵,几段几树?

  (3)画一条15厘米长的线段,两端都不种,每隔5米种一棵,几段几树?

  6、强化规律。

  请前排同学到台前扮演小树,模拟种树的三种情况,记忆种树的规律。

  师:刚才同学们用勤劳的双手和智慧的大脑,不仅设计了合理的植树方案,还探究出了植树的规律,真是太棒了,你们幸福吗?拍拍手吧!

  师:其实啊,植树问题也不只是与植树有关,生活中还有很多的现象与植树问题类似,我们把这类问题统称为“植树问题”。(板书课题)

  你能举出一些类似的例子吗?(指名说一说,如,路灯,栏杆,队形……)

  三、巩固练习,运用规律。

  师:要解决植树问题,首先要确定它是三种情况中的哪一种。下面我们来运用这些规律解决一些问题。(课件逐一出示)

  1、同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要栽多少棵树苗?

  2、动物园的大象馆和猩猩馆相距60米,绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?

  3、为庆祝六一,学校要在教学楼前小路的两旁插上小旗子,每4米插一面,20米内可以插多少面小旗子?

  4、提高题。园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (1)先判断属于哪种情况,独立解决。

  (2)小组交流。

  (3)汇报。

  师:运用自己发现的规律去解决了问题,是不是一件幸福的事?我们拍拍手吧!

  四、回顾整理,反思提升。

  师:回忆一下,在我们这节课的学习中,是什么帮助了我们去发现了那么多规律?(线段图)线段图是我们在学习中经常用到的一种工具,同学们一定要把它当成好朋友噢。这节课老师感到很快乐,我收获了幸福,你们收获了什么?

  指名说一说。

  你认为谁的表现最值得你去学习?

  板书设计:

  植树问题

  两端都栽:棵数=段数﹢1

  只栽一端:棵数=段数

  两端都不栽:棵数=段数-1

《植树问题》教学设计4

  教学内容:

  《义务教育教科书.数学》五年级上册p106—107。

  教材分析:

  “植树问题”是义务教育课程标准实验教科书四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、两端不栽以及封闭图形(方阵问题)等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  学情分析:

  学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

  设计理念及思路:

  “数学广角”系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。

  解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干段(间隔),由于路线不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。“植树问题”的本质是对应问题,只要明确了“间隔”与“树”这两者之间的对应关系,突出“一一对应”的思想,再以此为基础并通过适当变化就可以应对各种变化了的情况。

  为了更好的落实教学目标,本节课在教材的处理上我作了如下调整,把原例题中的路长“100米”改为“20米”,把“两端要栽”这个条件去掉了。数据改小有利于学生思考,也便于学生动手操作,但并不影响我们要研究的数学问题。“两端要栽”这个条件去掉了,旨在让学生在一个开放的情境中,通过动手操作、演示用一一对应的思想方法去探究植树问题中间隔数与棵数的关系。再通过展示现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后用发现的.规律尝试用数学的方法来解决实际生活中的简单问题,从而使学生建立起深刻、整体的表象,提炼出植树问题解题思想方法。

  教学目标:

  1.知识技能。

  借助直观,通过间隔和数的对应,理解间隔数与植树棵数的规律,建立不同情境下植树问题的数学模型。

  2.数学思考。

  (1)学生在参与观察、动手操作、比较等数学活动中,发展解决问题的意识和能力,能清晰地表达自己的想法。

  (2)学会独立思考,体会数形结合、一一对应、化归、建模等数学思想方法。

  3.问题解决。

  (1)能运用所得到的规律解决实际问题。

  (2)能和他人合作交流。

  4.情感态度。

  (1)能积极参与数学活动,对数学有好奇心和求知欲。

  (2)在数学学习过程中,体验获得成功的乐趣,建立自信心。

  (3)感受数学在日常生活中的广泛应用,体验植树问题的价值和作用。

  教学重、难点

  重点:探究棵数与间隔数之间的关系,运用一一对应,建立植树问题模型,会应用植树问题的模型解决一些相关的实际问题。

  难点:应用植树问题的模型灵活解决一些相关的实际问题。

  教学准备

  多媒体 笔 直尺

  教学方法

  讲授、演示、讨论交流、操作练习等

  教学过程:

  一、课前互动、引出课题

  师:想让自己的头脑变得更聪明的同学请以最佳的状态坐好,都有这个美好的愿望,光说不练可不行。这节课就让我们走上思维的道路,一起去迎接新的挑战吧。请看老师给你们带来的课前思维训练题:

  1.一根木头长10米,要把它平均锯成9段,需要锯几次?

  2.四年级在三楼,每上一层要走20个台阶,一共要走多少个台阶才能到三楼?(每层台阶数相同)

  师:锯木头和上楼梯是生活中常见的现象,我们把它叫做“植树问题”,今天这节课我们就一起来研究有关植树问题的知识。(板书课题:植树问题)

  二、探索规律、建立模型

  (一)创设情境,出示问题。

  园林工人打算在一条长20米的笔直小路一边植树,请同学们按照每隔5米栽一棵的要求帮忙设计一份植树方案,并说明理由。

  师:从这份要求上,你能获得哪些信息?

  (预设:20米长的小路,一边,每隔5米栽一棵)

  师:每隔5米是什么意思?

  (预设:两棵树之间的距离是5米,每两棵树的距离都相等)

  (二)动手操作,设计方案

  同桌二人合作,摆一摆或画一画

  (三)交流汇报,展示作品

  师:大多数同学已经完成了,谁来汇报(汇报后展示)

  (预设:我们小组设计栽了5棵树。在一条长20米的路上,开始先栽一棵,然后隔5米栽第二棵,再隔5米栽第三棵……再隔5米栽第五棵。)

  师:不错,老师期待你更精彩的表现,他们设计了5棵,还有不同方案吗?

  (预设:我们小组设计栽了4棵树,开头的地方没栽,先隔5米栽第一棵……隔5米栽第4棵。)

  师:为什么开头的地方不栽?

  (预设:因为有的时候在一条路的一头可能会有障碍物,所以不能栽。)

  师:你想得真周到,真是个既细心又爱动脑的孩子。是呀,如果在路的一端有建筑物就只能在另一端栽了!同学们的设计真精彩啊!还有不同的设计方案吗?

  (预设:如果路的两端都有建筑物,可以栽3棵。)

  师:你回答的太棒了,老师感到震撼!对,有的时候在路的两端都会有障碍物,这个时候路的两端就不能栽树。

  (四)比较方案,探究规律。

  1.间隔数与总长、间距的关系。

  (1)出示植树的三种情况,学生观察相同点。

  师:同学们真有创造力!短时间内根据要求设计出了三种不同的方案,你们都有资格成为一名设计师了。现在请用你们雪亮的眼睛看一看,这三种方案中相同的地方是什么?

  (2)学生汇报,教师板书。(总长、间距、间隔数 20 5 4)

  (3)间隔数与总长、间距的关系。

  师:这三种方案的间隔数都是几?能用一个算式来表示吗?(20÷5=4(个))在这个算式中,每个数字分别表示什么?

  你们能说说怎样求间隔数吗?(总长÷间距=间隔数)

  问:要想知道有几个间隔,必须要知道哪两条信息?(总长、间距)

  师:接下来,咱们来比一比,谁的反应快?(如果一条小路长100米,每隔10米栽一棵树,一共有多少个间隔呢?如果每隔20米栽一棵树,一共有多少个间隔呢?)

  2.间隔数与植树棵数之间的关系。

  (1)学生观察不同点,教师讲解三种方法的名称,同桌交流棵树和间隔数的关系。

  问:刚才咱们找到了这三种方案的相同点,请同学们再用你们睿利的目光观察,不同的地方又是什么呢? (预设:植树的棵数不同、植树的方法不同)

  学生汇报后,教师讲解三种方法的名称。

  师:看来虽然间隔数相同,但是不同的植树方法,植树棵数是不同的。我们就来研究在不同的植树方法中,间隔数与植树棵数之间存在着怎样的关系。赶紧用你们的慧眼去发现吧,可以把你的发现和同桌分享。

  (2)汇报交流。(板书)

  (3)演示,明白原因。(演示:树与间隔之间的一一对应关系。)

  3.小结:解决植树问题方法

  师:会求植树的棵树吗?这三种关系可是个宝贝,你们想得到它吗?那请闭上眼睛,打开你的大脑主机,我要把这个宝贝输入你的大脑了,千万别开小差啊,出现死机现象那可麻烦啦,准备好了吗?我要开始传宝贝了……好,收到了宝贝的同学请用最美的姿势坐好。

  三、巩固应用、内化提高

  师:既然宝贝已经保存在你的大脑里了,那可不能让它天天睡懒觉,得常常拿出来发挥一下它的神奇作用。下面这几道题就需要它大显身手。请看:

  1.有一条500米的石子路,在石子路的一侧每隔5米栽一棵(只栽一端),需要准备几棵树?

  2.同学们在全长1000米的小路一边植树,每隔8米栽一棵(两端都栽)。一共需要多少棵树苗?

  3.大象馆和猩猩馆相距60米。绿化队要在两馆间的小路一侧栽树,相邻两棵树之间的距离是3米。一共要栽几棵树?

  4.在一条全长180米的街道两旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?

  四、课堂总结、拓展延伸

  师:今天我们一起研究了有关“植树的问题”,不过,我有一个疑问想请大家帮我解释一下:植树问题就仅仅是指植树这一种现象吗?

  生举生活中的其他例子,锯木头、上楼梯、安装路灯……

  回到大脑思维体操的题目,进一步理解每一个算式表示的意思。

  师:第一题锯木头属于哪种情况,第二题又属于哪一种情况呢?

  师:今天这节课,你觉得你最大的收获是什么?

  师:植树问题在我们的生活中无处不在,它美化着我们的生活,美化着我们的校园。其实在“植树问题”中,“植树”的路线可以是一条线段,也可以是一个封闭图形,比如正方形、长方形或圆形等。有兴趣继续探索吗?请利用本节课学到的方法回家和家长探讨。

  板书设计:

  (一条线段上的)植树问题

  方法 间隔数 棵数 关系

  总长 ÷ 间距

  两端都栽 4 5 棵数=间隔数+1

  只栽一端 4 4 棵数=间隔数

  两端不栽 4 3 棵数=间隔数-1

《植树问题》教学设计5

  设计说明

  “植树问题”对于学生来说比较抽象,学生接受起来较为困难,本节复习课,就是让学生在已有知识的基础上,巩固所学,理清思路,让学生的数学能力得到进一步的提高。

  1.通过对比,提高学生解决问题的能力。

  植树问题的复习分为三个类型:两端都栽树、两端都不栽树和在封闭路线上栽树。由于它们之间都存有共性:都隐藏着间隔数与棵数之间的关系,因此,本节课把所有类型的植树问题归纳在一起,通过观察比较,得出公式,总结这一类问题的解决方法和策略。最后能够运用所学知识解决所有和植树问题相关的实际问题。

  2.通过变式练习,培养学生灵活运用所学知识的能力。

  在学生进一步明确了三个类型的“植树问题”的解决方法和策略之后,设计了不同难易程度的练习,让学生根据前面发现的规律来解决。同时做好植树问题和生活实际问题的对比沟通,培养学生的应用意识,提高学生学习数学的兴趣,提高学生运用所学知识解决实际问题的能力。

  课前准备

  教师准备:PPT课件、课堂练习卡

  学生准备:课堂练习卡

  教学过程

  ⊙创设情境,导入复习

  第七单元,我们共同研究了“植树问题”,想一想,“植树问题”存在几种情况,它们的关系是怎样的呢?指名回答后,老师小结。

  (1)在线段上栽树。

  ①两端都栽:棵数=间隔数+1

  ②两端都不栽:棵数=间隔数-1

  (2)在封闭路线上栽树:棵数=间隔数。

  设计意图:通过引导学生进行知识回顾,进一步理解植树问题中存在的规律,为下一步分层练习作铺垫。

  ⊙分层练习,强化提高

  1.基本练习。

  (1)在练习本上画一条10厘米长的.线段,每隔2厘米画一朵小花,两端都要画,一共可以画多少朵小花?

  (2)一个堤坝长200米,沿堤坝栽一行小树,每隔10米栽一棵,只有一端栽,一共可以栽多少棵?

  (3)在一段公路的一边栽95棵树,两端都栽,每两棵树之间相距5米,这段公路全长多少米?

  (4)公园大门前的公路长80米,要在公路两边栽上树,每两棵树相距8米(两端也要栽)。园林工人共需要准备多少棵树?

  (学生自由解答,小组内交流,然后教师组织全班交流,指名学生回答,其他同学纠正错误)

  师:同学们真聪明,计算得这么准确,下面老师又为你们准备了一些题目,有没有信心完成?

  2.综合练习。

  一个挂钟,1时敲1下,3时敲3下,12时敲12下,当这个挂钟3时时敲3下共用了4秒钟。当12时时敲12下要用多少秒?

  (1)读题明确题意。

  (2)分组合作探究。

  设计意图:通过分层练习,层层深入地回顾了解决问题的步骤和方法,从而进一步提高了学生的解题能力。

  ⊙全课总结

  通过这节课的复习,我们对植树问题进行了回顾,大家有什么收获呢?

  ⊙布置作业

  1.校园里有一段长80米的路,在路的一侧栽松树,每隔5米栽一棵,一共可以栽多少棵?

  2.要在100米的马路两旁栽树,每隔5米栽一棵,一共可以栽多少棵?

  3.一个圆形花圃周围长40米,沿花圃一周每隔4米插一面红旗,每两面红旗的中间插一面黄旗,花圃周围各插了多少面红旗和黄旗?

  4.一个小朋友以相同的速度在路上行走,从第1棵树走到第17棵树需要16分钟。如果这个小朋友走了30分钟,应走到第几棵树?

《植树问题》教学设计6

  教材分析:

  “植树问题”在实际生活中应用比较广泛,它通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,通过学生的动手操作、自主探究来发现现实生活中它们的规律,,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。教学目标:

  1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

  2.掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。

  教学重难点:

  掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。

  教具学具:

  绳子、挂图、泡沫、小树、题卡

  教学过程:

  一.创设情境,导入新课

  1.小游戏:

  点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种情况:4个、3个、2个)(解释“间隔”的意思)

  通过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)点评:通过游戏激趣,引出“间隔”、“间隔数”的概念教学,由于有绳子打结作铺垫,抽象概念得到了具体化,同时间接渗透了间隔与间隔数两者之间的关系,为探究新知打下良好的基础。

  2.导入新课:今天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)

  二.新课探究:

  1出示例题:(同学们,今年我们海南迎来了一件大喜事:海南国际旅游岛建设发展规划纲要获批了,为了响应海南国际旅游岛建设的号召)寰岛小学决定美化校园,要在长50米的塑胶跑道的一侧每隔5米植一棵树,一共需要准备多少棵树苗?

  点评:所选例题具有很强的开放性,同时以“海南国际旅游岛建设”引入例题,体现了数学与生活紧密联系,让学生在轻松愉快的生活化的课堂环境中学习数学。

  2.分组动手操作(分八小组,每组6人),在泡沫上“植树”,

  要求:(1)计算一共需要准备多少棵树苗

  (2)思考棵数与间隔数的关系。

  点评:学生亲自动手操作,并通过仔细观察、交流讨论,有效促进学生思维活动的体验以及情感的体验过程,提高了学生分析问题和解决问题的能力,把感性认识上升为理性认识。

  3.汇报结果:

  (1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1

  (2)只种一端:50÷5=10(棵)结论:棵数=间隔数

  (3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1

  4、总结(学生汇报教师书写):

  (1)两端都种:棵数=间隔数+1

  (2)只种一端:棵数=间隔数

  (3)两端都不种:棵数=间隔数-1

  点评:孔子说:“吾听吾忘,吾见吾记,吾做吾捂!”学生在动手操作的过程中,仔细观察,用心思考,在操作的过程中充分体验,充分交流,加深对植树问题三种情况的理解。结论的得出也就水到渠成了。

  三、课堂练习

  1、做一做:

  (1)园林工人要在全长800米的公路一侧植树,每隔4米栽一棵(两端都要栽)。一共需要多少棵树苗?

  (2)李家庄小学从校门口的门柱到教学楼的墙根,有一条长120米的笔直的校道,在校道的一边每隔5米种一棵椰子树,一共种了多少棵椰子树?

  2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。

  (1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

  (2)插彩旗(20分):学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

  (3)上楼梯(20分):小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

  (4)公交站(30分):5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

  (5)锯木头(30分):一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

  (6)街道上(50分):在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

  (7)滑冰场(50分):圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (8)钟表上(50分):广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

  (9)电线杆(100分):在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

  (10)广告牌(100分):在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

  点评:设计形式新颖、有梯度、富有情境化和生活趣味的练习题,激发了学生的学习兴趣,充分调动了学生的解决问题的积极性,同时充分地体现了数学与生活的紧密联系,使数学回归生活,

  四、全课小结:这节课我们学习了什么内容?你还有什么疑问?(植树问题的三种情况)

  五、板书设计

  植树问题

  两端都种:棵数=间隔数+1

  只种一端:棵数=间隔数

  两端都不种:棵数=间隔数-1

  例题:寰岛小学决定美化校园,要在长50米的'塑胶跑道的

  一侧每隔5米植一棵树,一共需要准备多少棵树苗?

  两端都种:50÷5+1=11(棵)

  只种一端:50÷5=10(棵)

  两端都不种:50÷5-1=9(棵)

  (1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

  (2)插彩旗:学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

  (3)上楼梯:小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

  (4)公交站:5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

  (5)锯木头:一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

  (6)街道上:在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

  (7)滑冰场:圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (8)钟表上:广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

  (9)电线杆:在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

  (10)广告牌:在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

  教学后记:

  本节课旨在通过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,积极性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:

  一、动手操作、合作交流、探究规律:

  本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的形成,提高了学生的思维水平,完善了学生的认知结构。

  二、练习的设计独特、新颖、有梯度:

  本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的积极性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)

  三、充分体现学生的主体作用及教师的主导作用:

  本节课,我通过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。

《植树问题》教学设计7

  教学内容:

  四年级下册第117、118页例1

  教学目标:

  1.利用生活中的问题,通过实践活动让学生发现段数与植树棵数之间的关系,并能利用规律来解决简单的植树问题。

  2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

  3.渗透数形结合的思想,培养学生借助图形解决问题的意识。

  4、 通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

  教学重难点:

  1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

  2.培养学生从实际问题中发现规律,应用规律解决问题的能力。

  3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。

  教学、具准备:课件、尺子等。

  教学过程:

  一、游戏问答,认识“间隔”

  1.同学们,我们先做个游戏请你们伸出一只手张开手指,仔细观察。

  2、 把你的手放好,我们进行快速问答:五个手指几个空?4个手指几个空?2个手指几个空?3个手指几个空?一个手指几个空?

  3、 这4个“空”也可以说成4个“间隔”,5个手指之间有4个间隔, (全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)

  4、今天我们就一起来研究生活中跟间隔密切相关的数学问题。

  二、创设问题情境:

  1、最近我们的学校发生了很多的变化,新修建的`操场旁有一条小路需要同学们发挥聪明才智来绿化、美化我们,现在请你来当设计师,你对自己有些信心吗?现在我们一起来了解一下设计的内容和要求。

  2、多媒体出示题目:学校操场边有一段长20米的小路,学校打算在小路一边植树(两端都栽)、并且每两棵树之间的距离都相等。请按照要求设计一份植树方案。并说明设计理由、

  3、从屏幕中你获得了哪些信息?你认为在设计时需要特别注意什么?你能解释什么是两端吗?

  (总长20米两端都栽间距相等)

  4、在分组探讨前,请先商量好准备每隔几米栽一棵,然后动动手、动动脑,看用什么方法能够又快又好的解决这个问题。(同桌合作)

  5、学生活动,教师巡视指导。

  三、探讨新知:

  1、谁能展示一下你的设计才能,注意说明白你是每隔几米栽一棵?一共需要多少棵树?你是怎样获得这个结果的?

  2、学生交流汇报(画线段图法、计算法)

  3、 教师介绍讲解概念:总长、间距、段数、棵数(并随机板书)

  4、用多媒体演示线段图的推理过程。

  在设计方案、交流方法的过程中,老师发现有的同学没有画线段图,而是直接列出了算式,他们一定找到了规律,我们现在也一起来找一找这个规律是什么。

  总长20米,间距10米,有几段几棵。

  总长20米,间距5米, 有几段几棵。

  总长20米,间距4米, 有几段几棵。

  总长20米,间距2米, 有几段几棵。

  5、学生交流,教师总结并板书:

  棵数总比段数多1,段数总比棵树少1。

  总长÷间距=段数段数+1=棵数

  6、当总长是20米时,我们可以用线段图来解决,当路段变长是1000米、20xx米时,就不能这样做了,就需要用发现的规律来解决这样的问题。

  7、 多媒体出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端都栽)。一共需要栽多少棵树苗?

  (1)了解题目内容。

  (2)学生独立思考,全班交流。

  8、刚才我们所提到的手指数和间隔数分别相当于植树问题中的哪个数量呢?生活中不止是植树问题包含着间隔现象,在其他方面也广泛存在,你能举出这样的例子吗?(锯木头、路灯、表面上的间隔和数字……)

  9、下面我们就一起来解决生活中类似的问题:(独立思考解决,全班交流)

  ①同学们做早操,某行从第一人到最后一人的距离是24米,每两人之间相距2米,这一行有多少人? (独立思考解决,全班交流)

  ②李老师从一楼去某班教室,每走一层楼有24个台阶,共走了48个台阶。你知道李老师去几楼吗? (独立思考解决,全班交流)

  ③5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共应该设置几个车站?(独立思考解决,全班交流)

  ④在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一座。一共要安装多少座路灯?

  听老师读题你自己再读一读,你发现这道题与我们刚才所解决的问题有什么不同?有什么特别需要注意的词语?(2千米 两旁)学生独立思考后,全班交流方法。

  四、拓展例题,训练思维:

  1、多媒体出示例1:同学们在全长()米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要栽21棵树苗、

  (1)了解题意,解决问题。(21-1=20段20×5=100米)

  (2)学生质疑:为什么用21-1=20 算出的是什么?为什么要减1?

  (3)我们所解决的这个问题跟刚才我们解决的例1有什么不同?

  (不论是要算出棵数还是总长都要先知道段数,然后根据问题列出算式)

  2、思维训练:

  ①第一个同学到第二个同学之间的距离差不多是1米,那么,第一个同学到第五个同学的距离是多少米?

  ②园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  3、出示刘翔的图片,展示刘翔竞赛的过程引出问题:中间共有10个栏,栏间距离为12、2米,请你们算出从第一栏架到最后一个栏架有多少米吗?

  五、课堂总结:今天我们一起探讨学习了植树问题中两端都栽的情况,谈一谈你的收获有哪些。其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等 ,这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

《植树问题》教学设计8

  教学内容:

  四年级下册数学教科书第117页的例1

  教学目标:

  知识与技能

  1、理解和掌握在一条线段上植树问题的规律,本节课研究“两端都要种”的“植树问题”中间隔数与植树棵数之间的规律。

  2、引导学生用画线段图的方法分析理解题意,在摆学具的过程中理解间隔数与所栽棵数之间的规律,建构数学模型,感受数学的简化思想和应用价值。

  过程与方法

  经历解决实际问题的过程,体验分析解决问题的方法。

  情感态度与价值观

  体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力,受到热爱劳动、保护环境的教育。

  教学重点:

  发现“两端都栽”的植树棵数与间隔数之间的关系,并用发现的规律解决实际问题。

  教学难点:

  能应用规律解决实际问题

  教法与学法:

  教法:创设情境、引导学生探究

  学法:小组合作讨论

  教学准备:

  多媒体课件、30根小棒、6个圆片、6个三角形

  教学过程:

  一、创设情境

  课件出示:几张沙尘暴发生时的图片

  问生:看到这几张图片,要想改变这样的生活环境,你应该做的最有意义的活动是什么?(植树造林)

  师:植树造林可以防止沙尘暴,防止水土流失,净化空气,对我们有很多的益处。今天我们就来学习“植树问题”。板书课题。

  设计意图:通过生活中的几张照片,沟通数学与生活的联系,让学生体验到数学问题来源于生活,激发学生的学习兴趣,渗透环保教育,由此导入新课,明白本节课的学习内容。

  课件出示:(下面哪种情况属于两端都栽的)

  让学生直观地看到两端都栽的植树情况,然后进入本节课的主题:今天我们就来研究“两端都栽”的植树问题。

  设计意图:通过图示法,让学生直观地理解“两端都栽”的意义,为更好地探究新知作铺垫。

  二、自主学习,合作探究。

  (1)课件出示例题

  1、出示例题后,让学生猜一猜,可能栽了几棵?(4棵、5棵、6棵)

  设计意图:了解学生的已有知识水平,以及学生对自己答案的解释,这个环节教师不论学生答案是否正确,不作任何解释。引出矛盾,激起学生下一步探究的欲望。

  2、这时教师不急于下结论,让学生通过摆学具、画线段图等方法去验证哪个答案是正确的。学生发表各自的看法,说出为什么是5棵?渗透一一对应的思想。

  设计意图:通过摆学具、画线段图,让学生动手操作,直观验证到底哪个答案是正确的,潜移默化地渗透一一对应的思想。让学生通过实验的方法,做到心服口服,不盲目地作出选择,培养学生严谨认真的科学态度。

  3、想一想:植树时为了美观,整齐关键先确定什么?全长20米的小路一边植树,(两端要栽),还有哪些植树方案?(学生会出现间隔7米栽一棵,这时说明理由,如果这样栽的话,间隔长就不相等了)

  设计意图:给学生展现自我的`机会,出现反例时,更能激发学生的求知欲,利用错误资源,能更好地证明间隔长必须是相等的,引出“间隔长”的意义。

  (2)课件出示表格

  (3)解释表中的“间隔长”、“间隔数”分别表示什么?

  (4)观察表中的数据与课件图示,让学生找一找全长、间隔长、间隔数、所栽棵数之间的关系,互相交流讨论。

  设计意图:通过分组练习探究,最后把结果都绘制到一个表格中,通过3个例子,采用不完全归纳法,让学生观察、讨论、交流,得出数量之间的关系,这是本节课的重点之处。

  (5)汇报交流成果,得出规律。

  从左向右看:全长÷间隔长=间隔数间隔数+1=所栽棵数

  从右向左看:所栽棵数-1=间隔数间隔数×间隔长=全长

  设计意图:数形结合,完善数学模型,弄清表中四个数量之间的关系,为后面解题提供解题思路。关键是弄清楚植树的棵数比间隔数多1。

  (6)初步应用规律解决问题。

  三、应用规律解决实际问题。

  1、自测题,看学生的掌握情况。

  设计意图:理解植树问题中,求全长的方法。

  设计意图:理解植树问题中,求所栽棵数的方法,加深理解“植树的棵数比间隔数多1”的道理。

  2、让学生说一说生活中的植树问题。

  设计意图:把植树问题进行扩展,在生活中找到植树问题的原型,这样把知识系统化,使学生能够举一反三,触类旁通,知道植树问题中的“树”可以代替生活中的其他事物,找到数学中的植树问题与生活中的植树问题的联系。

  四、应用规律解决生活中植树问题问题的原型。

  1、这一组有9个同学,相邻两个同学之间的距离大约是()分米,第一个同学到第9个同学的距离大约有多远?先让学生测量间隔长,然后再求问题。

  2、钟表问题。

  设计意图:灵活应用植树问题的数学模型解决生活中类似的植树问题,把植树问进行扩展应用,提高学生灵活解题的能力。

  五、课堂总结。

  设计意图:如此设计是基于学生的思维状态,让学生对当堂课的知识和收获做一个回顾,就是学生整理知识思路、内化知识的过程,能起到画龙点睛的作用,更能培养学生的归纳能力。

  教学反思:

  《植树问题》是人教版义务教育课程标准实验教科书四年级下册中数学广角的内容。数学广角作为人教版新增的内容之一侧重点是让学生在掌握知识的同时向学生渗透一些常用的数学思想和方法。如何把抽象的数学思想方法很好地渗透在环节在教学中使学生在“润物细无声”中深刻体验到数学思想方法的价值这是我在教学设计时着重思考和要解决的问题。一节课实施下来有成功之处也有不足之处。现做一个简单的小结与反思。

  成功之处:

  一、教学设计有深度、有厚度。

  教学设计分两条线走:一条线以构建学生知识结构为线索,使学生对植树问题的认识经历了“生活问题——猜想验证——建立模型”不断数学化的过程,较好地实现了由生活中的具体问题过渡到相应的“数学模式”,为上升到更抽象的数学高度奠定了基础。然后又让学生运用模型解决问题,把数学化的东西又回归于生活,也让学生再一次体会数学与生活的密切联系。另一条线以渗透数学思想方法为线索。

  对于植树问题的探究,不仅让学生通过画线段图、摆学具的方式自主探究、寻找,而且结合线段图、摆学具,让学生理解了为什么两端都种时,棵数会比间隔数多1,多的1指的是哪一棵树。让学生不仅要知其然,还要知其所以然。

  由反复的修改,让我深刻地体会到了对教材研究的重要性,明白了“教师对教材看得有多深,才能使你的课堂有多厚”的道理。也让我知道了自己今后应该努力的方向。

  二、敢于放手让学生去探究,体现学生的主体地位。

  整堂课,我都比较注重学生的主体地位。因为我知道,只有学生自己想学、愿学,才能主动地学,并把学到的东西内化为自己的知识。因此对于重点部分的引入,即探究两端都种时,棵数与间隔数之间究竟有什么关系,我先让学生通过自己的猜测得到答案。当几种答案产生冲突时,再引导学生探究,这样更容易激发学生的探究欲望,激活学生的主体意识。而后的探究部分我就放手让学生去做,教师给予适当的指导,让学生在自主探索中掌握用线段图探究植树问题规律的方法。由此把方法内化为自己的东西,为下节课自主寻找另外两种植树问题的规律时,学生就比较轻松愉快了。

  三、注重教学思想的渗透和学习方法的传授。

  在整个教学的过程中,我都很注重数学思想方法的渗透。比如:当学生用一个线段图证明规律时,适时点拨。用一个线段图就能证明它是普遍存在的规律吗?再画几个试试(以小组为单位,分组研究)。交流时,让不同的学生说出用不同间隔的线段图得到同一个规律,实际就是向学生渗透不完全归纳法。在展示交流部分,通过对比10个间隔与2个间隔的线段图的难易,对比画一棵树和用

  一个点表示一棵树的难易,让学生体会简化的思想。通过找生活中的植树问题,并解决生活中的植树问题,让学生体会化归的思想。对于学习方法的传授,整节课都特别重视线段图的运用。

  当然,这节课也有许多的不足之处,列举几条:

  一、教学时间安排欠妥。有的教学内容没有来得及出示,有的内容讲解比较仓促。练习巩固时间不充分,没有检测时间,使教师没有及时掌握每个学生的学习情况,心中没底。

  二、本节课,我本想借助一一对应的思想去突破本节课的难点(两端都栽的情况下,所栽的棵数比间隔数多1),可是没有深入去理解植树问题中所蕴含的一一对应思想。所以,感觉得出的规律有些牵强、抽象,没有达到水到渠成的效果,没有把一一对应的思想与植树规律结合在一起,没有很好地突破难点。

  三、对学生评价这块显得能力不足。对于学生的评价如何做到即准确又有深度,还要具有启发性,这是我还得努力学习的方向。

  四、数学课关键在于“说”,以说促思,以说引思,这样可以了解学生的思维过程是否正确,以便教师及时调控课堂,改变教学策略,但是,为了能够完成教学任务,明知道应该让学生多说,但是由于时间问题,就把学生说的权利剥夺了,而去进行下面的教学内容,这是我一贯的通病,我争取改正,把更多的时间和空间留给学生,让学生真正成为课堂的主人。

  总之,一堂课下来,发现自己真的还有那么多的不足之处。反思自己,今后还应加强学习,学习理论知识、学习优秀课例,特别应该针对自己的不足之处,运用于实际教学之中,逐步完善、改正。希望能通过自己一点一滴的积累和改进提高自己的业务水平和调控、处理课堂生成的能力,使自己能不断进步、不断发展。

《植树问题》教学设计9

  教学目标:

  1、经历将实际问题抽象成植树问题模型的过程,运用“一一对应思想”掌握种树棵数和间隔数之间的关系。

  2、通过观察、比较、概括等数学活动,理解植树问题、排队问题等实际问题都有着相同的数学结构,渗透“化归思想”,能够运用总结出的思想、方法灵活地解决简单的实际问题,发展思维能力。

  3、感悟建构数学模型是解决实际问题的重要方法之一。

  教学重难点:理解植树问题、排队问题等实际问题都有着相同的数学结构,能够应用总结出的思想、方法解决一些简单的实际问题。

  教学过程:

  1、猜

  T:这节课我们就一起研究植树问题。请大家看屏幕:这里有一条线段,我们把它看成一条路,这条路长20米。如果要在这条路上种树,请同学们想一想,你还需要了解什么信息?

  S:每棵树之间的距离是几米?是不是两端都种?(随即揭示植树三种情况)

  T:同学们考虑问题还很全面,确实我们需要知道一个最起码的'条件,就是树和树之间的间隔是多少米。如果告诉你们每隔5米种一棵,请同学们想一想在这条路的一边种树,可以种几棵?

  S:可以种5棵,4棵,3棵。

  2、画

  T:能不能把你的想法用简单的示意图画一画呢?请同学们拿出老师课前发的练习纸,把你的想法画在练习纸上。开始吧!

  S独立画图,教师巡视指导。

  T:画好了的请举手。我们找同学说说你是怎样画的。

  顺学而导,学生交流时教师只需提醒学生检验是不是每隔5米种一棵?总长是不是20米?当学生交流种4棵的想法时,教师可让学生说说有不同的种法吗?交流这两种种法的不同。(同样种4棵树,想法一样吗?)

  3、找规律

  T:仔细观察这三种植树情况,虽然他们种的棵数不同,但是他们有一个相同的地方,你发现了吗?

  S:他们都是把20米的路平均分成了4段。(4段也可以说是4个间隔)

  T:你的这个发现特别有价值,谁再对照图说怎么都分成4段了呢?

  T:怎么求这个段数,能用式子表示一下吗?

  S:20÷5=4(个)(能解释一下吗?每隔5米种一棵,20米里面有几个5米就可以分成几段)

  T:我们解答这样的问题,首先要知道这条路被分成几段,我们来观察一下,这三种情况棵数和间隔数之间有什么关系?同桌之间先交流一下。

  S:汇报T强调在哪种情况下······(课件演示,结合学生回答随机演示多1和少1的原因)

  4、列算式

  T:能不能根据我们刚才发现的规律把植树的棵数用算式表示出来呢?

  S:独立列算式汇报说理由。

  T:每间隔5米种一棵,刚才这三种情况都出来了。如果是每隔2米种一棵,能种几棵?有几种种法呢?列出算式。

  5、解决问题

  T:老师这里有几个生活中的问题,看你们能不能运用这些知识来解决这些问题呢?

  (1、同学们要在全长100米的小路一边植树,每隔5米栽一棵(两端要载)。一共需要多少棵树苗? 2、大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米。一共要载多少棵树?

  3、5路公共汽车站行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?)

  S列式解答全班交流

  6、拓展延伸

  T:生活当中有没有类似植树问题的现象?或者是用植树问题这样思考方式思考的?

  S:剪绳子,锯木头,摆花

  T:老师这里就有这样一个问题,请看——一根木头长10米,要把它平均分成5段。每锯下一端需要8分钟,锯完一共要花多少分钟?(有时间就解答,时间到就留作作业。)

  7、总结

  T:这节课学得怎么样?

《植树问题》教学设计10

  教学内容:

  人教版四年级下册第八单元数学广角的所有例题,以及相关习题。

  教材分析:

  现实生活中与“植树问题”类似的有很多:如安装路灯、花坛摆花、站队中的方阵、锯木头、走楼梯,等等。由于它们之间都存有共性:都隐藏着间隔数与棵数之间的关系,因此,抽取比较有代表性的“植树问题”,作为数学模型研究,总结这一类问题的解决方法,和策略。

  本节课是把所有类型的植树问题归纳在一起,通过观察比较,得出公式,最后能够运用所学知识解决所有和植树问题相关的实际问题。

  教学目标:

  1、通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。

  2、理解并掌握“植树问题”几种类型的特征,以及解题方法。

  3、感受数学在日常生活中的广泛应用。

  教学重、难点:

  重点:掌握“植树问题”几种类型的特征。

  难点:解决所有和植树问题相关的实际问题。

  教学方法:

  巩固练习法。

  教具准备:

  多媒体课件。

  教学过程:

  一、创设情境,导入新课。

  1、直接揭示课题:今天我们来复习第八单元数学广角的植树问题。板书课题

  2、出示复习目标:

  (1)、理解并掌握“植树问题”几种类型的特征,以及解题方法。

  (2)、感受数学在日常生活中的`广泛应用。

  3、常见类型:

  (1)、两端都栽的植树问题;

  (2)、两端都不栽的植树问题;

  (3)、一端栽、一端不栽的植树问题;

  (4)、封闭图形的植树问题。

  二、探索解决问题的方法

  1、出示例题:

  例题:在全长20米的小路上植树,每隔5米栽一棵,你能想出几种植树方案?

  2、学生自主尝试,教师巡视指导。

  3、小组合作交流。

  4、全班交流。

  特点棵树间隔数棵树与间隔数的关系

  方案1两端都栽54棵树=间隔数+1

  方案2两端都不栽34棵树=间隔数-1

  方案3一端栽,一端不栽44棵树=间隔数

  方案4封闭图形44棵树=间隔数

  5、总结学习方法:

  植树问题有高招,做题之前先分类。

  两端都栽,棵树=间隔数+1;

  两端都不栽,棵树=间隔数-1;

  一端栽,一端不栽,棵树=间隔数;

  封闭图形,棵树=间隔数。

  三、巩固提高、发展创新。

  1、在一条长400米的道路一旁安装路灯,每隔50米安装一座(两端都要安装),一共可以安装多少座路灯?

  2、两座楼房之间相距56米,每隔4米栽雪松一棵,一行能栽多少棵?

  3、学校要在80米的跑道一旁插彩旗,每隔5米插一面。如果一端不插,一共需要多少面彩旗?

  4、一个圆形池塘,它的周长是200米,每隔10米栽一棵柳树,需要树苗多少棵?

  以上四道题为基础巩固题,下面两道为拔高题。

  5、一根木料锯成4段要12分钟,锯成10段要几分钟?

  6、祁老师要上楼去某班教室,从一楼开始,每走一层有32个台阶,一共走了96个台阶,你知道祁老师去几楼的教室吗?

  四、全课小结。

  你在这一节课里学习了什么知识?

  师:其实数学就在我们身边,只要我们善于观察,勤于动脑,你就会发现生活中有很多有趣的数学问题。

《植树问题》教学设计11

  教学目标:

  (1)在观察、操作及交流活动中抽象出植树问题的模型,掌握种树棵树与间隔数间的关系。

  (2)体验复杂问题简单化的快乐。

  教学重点:应用植树问题的模型解决相关的实际问题。

  教学难点:理解棵树与间隔数之间的关系。

  教学准备:课件

  教学过程:(如下文)。

  一、课前谈话

  1.手指游戏

  师:双手创造了幸福的生活,在我们的手上也隐藏了数学奥秘,同学们想明白吗?请举起右手像老师这样做,五指伸直,并拢再张开。看着张开的手,你从中想到了什么数字?(5,5个手指)

  师:老师从中也得到了一个数字4,你们明白它指的是什么吗?(缝隙、空格等)

  师:对了,指的是手指间的空格,在数学上我们把这样的空格叫做间隔。每两个手指之间有一个间隔,大家仔细观察老师的手,5个手指,有几个间隔,4个手指时有几个间隔呢?3个,2个手指时呢?

  师:你们发现手指数与间隔数的关系了吗?谁能说一说?(间隔数+1=手指数)

  [设计意图:以趣激学。从学生最熟悉的教学资源“手”入手,在简单的氛围中进入学习状态,初步感知生活中的植树问题。]

  2.导入课题

  师:我们手上都有这么多数学奥秘,看来数学真是无处不在!生活中的间隔到处可见。比如,刚才我们看到的5根手指有几个间隔;爬楼梯要几层;栓广告牌要几个柱子等就是数学中的植树问题。(板书课题:植树问题)这天咱们主要来研究“两端都栽”的规律。(板书:两端都栽)

  二、动手种树,初步感知

  1.创设情境,提出问题

  (1)课件出示例1

  同学们在全长100米的小路一侧植树,每隔5米栽一棵树(两端要栽)。一共需要多少棵树苗?

  (2)理解题意

  ①指名读题,从中你了解哪些信息?

  ②理解“两端”是什么意思?

  (3)讨论交流

  师:我这样认为,100÷5=20,所以要准备20棵树苗。你们觉得呢?有了答案后与同桌交流交流。

  全班讨论、交流,汇报后得出结论,这种说法不对。就应是:

  100÷5=20(段)20+1=21(棵)(板书)

  2.简单验证,发现规律

  师:把双手举起来叉开手指,能够看到10根手指共有9个间隔,如果把手指看成树苗,10棵树有9个间隔。

  课件演示:每5米一棵,种到第100米的时候,你发现了什么?(两端都要种)

  问:100÷5=20(段)20表示什么意思?(两棵树之间的距离)

  20+1=21(棵)20段为什么不是20棵,而是21棵呢?

  我们把这条小路平均分成20份,其中的每一份(或者说每一段,每一个空)就是一个间隔,在这道题中,间隔指什么?共有几个间隔呢?也就是说,如果两端都种,种的棵树=间隔数+1

  透过这个例题,你明白了什么?(棵数与段数有关,求棵数得先求段数。即段数=总长÷间距)

  师:你们真了不起,发现了植树问题中十分重要的规律,那就是:

  间隔数(段数)=全长÷段长

  植树的.棵数=间隔数+1

  全长=段长×段数

  [设计意图:导之敢学。在决定、计算、验证探索中学习知识,发现知识,并透过讨论交流,发现植树问题的一个十分重要的规律。]

  三、利用规律,解决问题

  师:其实植树问题并不只是与植树有关,生活中还有许多现象和植树问题很相似,我们一齐来看一看下面几个问题。

  ①刘怡瑶从家到校园乘公共汽车行驶路线全长3千米,相邻两站的距离是1千米。一共有几个车站?

  ②张老师去某班教室,从一楼开始,每走一层有12个台阶,共走了36个台阶,你明白她去几楼的教室吗?

  ③广场上的大钟3时敲3下,8秒敲完。11时敲11下,需多长时间?

  师:这些题是不是应用植树问题的规律解决的?看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

  [设计意图:乐中求学。把生活中类似植树问题的各种现象糅合在一齐,加深对植树问题模型的理解,提升学生思维的灵活性和深刻性。]

  四、再次探究,构建模型

  1.创设情境,激趣导入

  师:咱县新开张的德克士为了进一步宣传,要在全长50米的店面前沿插彩旗,请按照每隔5米插一面的要求设计方案,并说明理由。

  2.设计方案,动手操作

  师:能够独立思考也可小组讨论再设计方案。把你们设计的方案想一想,画一画,摆一摆。择优录取哦!

  (生动手摆学具,画线段图,动手算,师行间巡视,个别辅导,注意发现不同的算法)

  3.反馈交流

  师:谁来说一说自己设计的方案?把前沿分成几个间隔?(10个)插了几面旗?(11面,10面,9面)

  师:为什么同样的长度,同样的要求,插的旗数却不一样呢?你们的方案有什么特点呢?谁来展示一下自己的设计方案。

  生1:我设计分成10个间隔,插11面旗,两端都插旗(投影展示线段图同时师五指伸直手势表述)。

  生2:我也分成10个间隔,插10面旗,一端不插旗。(投影展示算法师拇指弯曲其余伸直手势表述)

  生3:我10个间隔插9面旗,两端不插旗。(投影展示学具摆法后师拇指和小指弯曲其余手指伸直表述)……

  4.师小结

  同一个要求,同学们却设计出了这么多不同的方案,真有创造力!看来你们都有成为设计师的资格。

  五、精彩回放,画龙点睛

  1.用手势表达植树问题的模型并考察同桌的掌握状况。

  2.透过这节课的学习,你们有什么收获?

  六、穿越时空,展望未来

  有20棵树,若每行4棵,问怎样种植,才能使行数更多?

  七、板书设计

  植树问题:

  两端都种:棵数=间隔数+1

  100÷5=20(个)……(间隔数)

  20+1=21(棵)……(棵数)

  10-1=9(个)……(间隔数)

  9+1=10(棵)……(棵数)

《植树问题》教学设计12

  一、教学内容

  教科书P117例1

  二、教学目标

  1、利用熟悉的生活情境,通过动手操作等实践活动,理解并掌握“两端都要种”的植树问题中间隔数与植树棵数之间的规律。

  2、在合作探究中解决问题,建构数学模型,感受数学的简化思想和应用价值。

  3、渗透数形结合的思想,培养学生借助线段图来解决问题的意识。

  三、教学重点、难点

  1、重点:通过探究,发现两端都栽的情况中“棵数=间隔数+1”

  2、难点:利用规律来解决生活中的实际问题。

  四、教学准备

  小棒、课件、练习本、表格

  五、教学过程

  (一)创设情境,引入学习

  1、每个人都有一双灵巧的小手,知道吗,在你的手上,还藏着数学知识呢?请伸出左手找找看,你找到了吗?

  (预设生:有5根手指生:有4个空)

  像刚才同学们所提到的2根手指间的空格,在数学上我们叫做间隔(板书间隔)

  2、生活中很多地方也存在着间隔,你能找到吗?

  (预设生1:树木之间有间隔生2:队伍之间生3:栏杆之间也有)指名3人

  3、老师也收集了一些(播放课件)

  过渡:看来与间隔有关的事物太多了,很有研究的必要,今天这节课我们就来研究与间隔有关的植树问题。(板书课题)

  (二)合作探究“两端都栽”的规律

  1、①课件出示请看题“学校准备在一条长20米的小路一旁栽树,每隔5米栽一棵(两端都栽),一共需要多少棵树苗?

  谁能响亮的读题?

  ②从题中你了解到了哪些数学信息?

  预设生1这条小路总长20米生2每隔5米种一棵(5米就是我们所说的间隔长)生3:两端都栽(什么是两端都栽?2人说)(板书两端都栽)生4:一旁

  ③能试着列列算式来解决吗?把你的想法列在练习本上。(指名板演)

  (预设生1:20÷5+2=6(棵)生2:20÷5+1=5(棵))

  还有不一样的吗?也上来写写

  说一说你的想法

  ④我发现你们虽然意见不统一,但是有一步却是相同的,找到了吗?20÷5是什么意思?

  指名2人说(板书总长÷间隔长=间隔数)齐读1次

  2、①到底哪种答案是正确的,你有什么方法来验证一下,同桌一起讨论一下。

  (预设生1:用手掌中的间隔现象来说明生2:用小棒来模拟种一种

  生3:画线段图来验证一下)

  方法有很多,但是画线段图是最常见、最一般的方法。

  ②你打算怎么画,能介绍一下吗?

  生介绍,师板画

  介绍,我们可以取任意长代表5米,这样5米5米地画,一直画到20米,(出示课件)几个间隔,几棵小树?(4个间隔5棵数)

  通过线段图,我们清楚的`看出正确答案应该是20÷5+1=5(棵))

  3、①如果老师将总长和间隔长进行变换,你能自己迅速画出线段图得出间隔数和棵数吗?

  两端都栽的情况下

  同桌合作完成表格第2、3两行。

  ②展示1个学生的作品,课件出示

  观察大屏幕上的数据,想一想在两端都栽的情况下,棵数与间隔数存在怎样的规律?

  指名3人说(在说时强调条件是两端都栽的情况下)(板书棵数=间隔数+1间隔数=棵数-1)加上条件再齐读一次

  4、验证规律

  ①在两端都栽的情况下,是不是棵数与间隔数都存在这种规律呢?想自己再来验证一下吗?

  ②请在表格的剩余两行自设总长和间隔长画一画线段图(注意你所设制的总长必须要能被间隔长整除)想一想怎样才能提高速度,间隔数太多了好不好?

  ③同桌再次合作,教师巡视

  ④汇报,教师记录结果

  ⑤通过这些数据,你有什么要说的吗?为什么棵数总比间隔数多1?

  700个间隔,几棵树?1000棵数几个间隔?

  (三)练习生活,拓展应用

  生活中有很多类似问题也能用植树问题的规律来解决,比如装路灯,设车站,做楼梯,锯木头等等,一起去看看吧!

  1、在一条全长400米的街道两旁挂灯笼,每隔8米挂一个(两端都挂),一共需要多少个灯笼?女生读题学生独立列式,说一说你的理解

  2、刘翔一共要跨10个栏,每两个栏之间的间隔长是10米,求从第一个栏到最后一个栏一共有多长?男生读题刚才求的是棵数,现在求的是(总长)要求总长必须知道什么条件独立列式,汇报结果,说说理解。

  3、你看过钟表吗?

  你听——当当,这是几时;当当当这是几时,有几个间隔?

  在钟声里也有数学问题,一起去看看吧!

  出示广场上的大钟5时敲响5下,敲响第一下到第五下用了8秒,12时敲响了12下,需要多长时间?

  (四)课堂小结,留下悬念

  1、这节课同学们都表现得非常认真,积极,想一想在这节课上你有什么收获?

  2、收获那么多,老师真为你感到高兴,其实植树问题中还有很多数学问题,你比如说一头栽一头不栽,两头都不栽,在封闭图形上栽等等,他们又存在怎样的规律?就让我们带着对这些问题的思考迎接下节课的学习吧!

《植树问题》教学设计13

  第二课时教学内容:

  教科书第120页的内容

  知识目标:

  通过开放题的教学,培养学生探究数学问题的兴趣,引导学生细致严密地考虑问题;

  能力目标:

  让学生自己动手,自己实验,得出规律,解决生活中的实际问题。

  情感目标:

  通过小组合作、交流,培养学生的协作精神。

  教(学)具准备:

  长方形泡沫塑料板(每小组一块,正面画圆,背面画其他的封闭图形),牙签,画有长方形的练习纸。

  教学过程:

  一、复习铺垫

  同学们,前面我们已经研究了一些植树问题,现在我这儿有三棵小树,要把它种在公路的一侧,想请你帮我想想有几种种法?

  指名回答,引导学生说出棵数与段数的关系:

  两端都种只种一端两端都不种

  棵数=段数+1棵数=段数棵数=段数-1

  请你把这个规律跟同桌说一遍;教师在黑板上贴示。

  二、引入新课:

  前几节课我们考虑的都是在直条线上种树,都可以找到线路的端点,可我们生活中经常会碰到在湖的四周植树,在花坛边缘种盆花

  这些你能找到它的端点来吗?这就是我们今天要重点来讨论的内容封闭路线上的植树的规律

  1、湖、花坛等等,它们的外围线路都是封闭的。它和不封闭路线上的植树规律是否相同呢?我们自己动手种一下就知道了。

  1)、请同学们以四人小组为单位,用牙签当树苗,在泡沫塑料板的圆上种几棵数(棵树任你自己决定),边种边数:种了几棵,把圆分成了几段?

  2)、学生以小组为单位操作;

  3)、交流:你们小组种了几棵,把圆分成了几段?

  4)、初步概括:你们发现了什么规律?(在圆形路线上植树,棵数=段数)

  2、是不是每种封闭路线上的植树规律都是这样的呢?我们还要进一步研究。

  1)、出示长方形空地题目

  我们学校5号楼的东面有一块长方形空地,要在它的四周种树,每边种3棵,四个角上可以种也可以不种,有几种种法?

  2)、四人小组讨论,并把种的方法在练习纸的长方形上表示出来(建议:公共角上的树用圆点表示,其他的用长点表示);

  教师巡视指导;

  3)、学生交流:说说你们小组是怎么种的?种了几棵?把长方形分成了几段?

  得出:种植路线是长方形的,种植棵数与种植段数是相等的。

  4)、出示教科书第120页的例3,让学生先独立思考,再讨论解决。

  5)、展示不同的解决问题的方法,集体讨论判断正误

  3、研究在其他封闭图形上种树:

  A、你还想在什么封闭路线上种树?(指名回答)

  B、学生在泡沫塑料板的各种封闭图形上种树,边种边数:种了几棵?分成了几段?

  C、小组交流。

  4、得出规律:在封闭路线上植树:棵数=段数(板书)

  5、联系:它和非封闭路线上的哪种情况相同?

  (告诉学生事物就是这样相互联系的!

  6、质疑问难:大家还有什么疑问吗?

  如果在不规则的封闭路线上植树,棵数和段数是否相同?

  三、尝试练习:

  练习第121页的做一做上的习题

  学生尝试练习,交流,指名板书解题方法。

  四、课堂小结。

  这节课你最大的收获是什么?

  第三课时课题:围棋中的数学问题

  教学内容:人教版教科书四年级下册数学广角第120页例3及部分练习。

  教学目标:

  1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;

  2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;

  3.让学生感受数学在日常生活中的`广泛应用。

  教学重点:从封闭曲线(方阵)中探讨植树问题。

  教学难点:用数学的方法解决实际生活中的简单问题。

  情感与态度目标:通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。

  教具准备:33格、44格、55格方格纸、围棋子若干粒、44格条形吹塑纸贴在地下。

  课前准备:课桌围成回字形。

  教学过程:

  一、情境导入(课件出示)

  猜谜:十九乘十九,

  黑白两对手,

  有眼看不见,

  无眼难活久。(打一棋类名称)

  [设计意图:用谜语引入,从学生的已有经验出发,激发学生的学习兴趣。培养学生良好的兴趣爱好。]

  二、探索新知

  1.教学每边摆放3粒棋子的方法。

  (1)课件出示围棋格子图,最外层每边能放3个棋子。最外层可以摆放多少个棋子?

  (2)抢答:读题后,让学生口算出答案。(学生可能会出现多种答案。)

  (3)动手验证:请学生分小组按要求摆放棋子,验证刚才答案。

  (4)汇报交流(着重请学生说出方法。)

  可能会出现以下方法:

  32+2=824=8

  33-1=834-4=8直接点数。

  教师表扬学生的创新摆法,并奖励智慧星。(教师随学生回答,用课件出示摆放方法。)

  2.教学每边摆放4粒棋子的方法。

  (1)课件出示围棋格子图,最外层每边能放4个棋子。最外层可以摆放多少棋子?

  (2)动手操作:请学生分小组按要求摆放棋子,写出算式。

  (3)游戏:让一学生当小老师,其余学生当围棋子,请小老师邀请围棋子按上题要求站在老师设计的大棋盘上。

  [设计意图:这一游戏的方法,激发了学生的兴趣,不仅使学生学到了摆放方法,让每个学生参与活动,把所学知识运动到游戏中。]

  (4)汇报交流(着重请学生说出方法)

  教师随学生回答,用课件出示摆放方法。

  (5)你们最喜欢哪种方法?为什么?

  3.教学每边摆放5粒棋子的方法。

  (1)课件出示围棋格子图,最外层每边能放5个棋子。最外层可以摆放多少棋子?

  (2)动手操作:请学生分小组按要求摆放棋子,写出算式。

  (3)汇报交流。(教师随学生回答,用课件出示摆放方法。)

  (4)你们最喜欢哪种方法?和同桌说一说。

  [设计意图:让每位学生都参与活动,通过抢答、验证、分析、交流等一系列活动,借助围棋盘探讨封闭曲线(方阵)中的植树问题,进一步体会数学在日常生活中的广泛应用,学生在亲身经历的过程中实现知识能力乃至生命的同步发展。]

  三、总结规律

  (1)师:你觉得再用棋子摆,方便吗?你能根据前面我们摆放的方法,填写下列表格,总结出规律吗?(小组合作完成)

  每边放的个数最外层总数

  3

  4

  5

  6

  18

  你发现了什么规律:_____________________________________

  (2)教学例3:出示围棋格子图。问:围棋盘的最外层每边都能放19个棋子,最外层一共可以摆放多少个棋子?

  (2)总结规律::教师随着学生的回答板书:

  间隔数边数=最外层的总数

  (3)学生根据规律,独立完成例3。

  三、运用规律

  1.如果最外层每边能放100个,最外层一共可以摆放多少个棋子?

  如果最外层每边能放200个,最外层一共可以摆放多少个棋子?

  如果最外层每边能放300个,最外层一共可以摆放多少个棋子?

  拓展思维:如果一个五边形,怎么算?一个三角形呢?(集体口答)

  2.做第121页第三题

《植树问题》教学设计14

  教学目标:

  1、在摸一摸、摆一摆、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。

  2、在亲身体验、交流中,进一步理解间隔数与棵数之间规律,并解决生活中的植树问题。

  3、在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。

  教学重点:

  理解“植树问题(两端要种)”的特征,应用规律解决问题。

  教学难点:

  让学生发现植树的棵数和间隔数之间的关系。应用规律解决问题。

  教学准备:

  课件

  教学过程:

  一、初步感知间隔的含义

  1、肢体体验:同学们都有一双灵巧的小手,它不但会写字、画画、干活,在它里面还蕴藏着有趣的数学知识,你想了解它吗?请举起你的右手,并将五指伸直、张开、用左手摸摸右手,数一数,五个手指有几个空格?(4个空格),师:在数学上,我们把这个空格叫“间隔”。 也就是说,大小拇指在一只手的两端:5个手指之间有几个间隔?(4个间隔)。弯弯你的大拇指看:4个手指之间有几个间隔?(4个间隔);把大、小拇指一齐弯弯看:3个手指之间有几个间隔?(4个间隔),那么,将5个手指换成小树,5棵小树之间有几个间隔(4个)。

  师:生活中的“间隔”到处可见,你知道生活中还有哪些间隔吗?(两棵树之间、两个同学之间、楼梯、锯木头、敲钟…都有间隔。)

  2、引入课题:师:树可以美化环境,清新空气,我们要多植树。在一条直线上种树,每两棵树之间相等的段数叫做间隔数,每个间隔的长度叫间距,也叫株距。间隔数与棵数的关系,数学里统称植树问题,这就是我们今天要探究的内容——在一条不封闭的直路上的“植树问题”。( 揭题,板书:植树问题)

  二、探究规律,解决问题。

  1、找出两端都种树的规律

  植树问题情景1,师出示:例1.同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?师:请同学们默读题目,谁来分析一下这道题的条件、问题、关键词和单位?要求一共需多少棵树苗?先要知道两端都栽树,棵数与间隔数有什么关系?要解决这个问题,实践是检验真理的唯一标准, 但是100米这个数字有点大,不好验证,在遇到比较复杂的问题时,我们可以先用比较简单的例子来验证。

  假设路长只有10米、15米、20米,每5米栽一棵,两端都栽:(两端就是路的两头),要栽几棵呢?(小组合作用画线段图来表示小路,假设路10米,每隔5米种一棵,这条小路平均分成了几个间隔?两端都栽,摆几棵小树呢?)师:请同学们仔细观察,两端都栽树,栽树的棵数与平均分成的间隔数谁多谁少呢?(棵数都比间隔数多1或间隔数比棵数少1)师问为什么两端都种树,棵树只比间隔数多1呢?(因为从一端看过去,棵数和间隔数一一对应,一端只多了一棵树。)已知间隔数怎样求棵数呢?出示并板书:两端都栽:棵数=间隔数+1)考考你:如果这条路是25米、每隔5米栽一棵,各要平均分成几个间隔?两端都栽,栽几棵树呢?30米呢?

  师:现在我们用研究出的'两端都栽树,棵数等于间隔数加1的规律来解决例1中的问题,在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?生:100÷ 5 = 20 (个间隔)20+ 1= 21(棵)。利用两端都栽树,

  棵数=间隔数+1”这个规律解决了两端都植树的问题。

  三、应用规律,走进生活。

  走进生活:

  (一)目标检测:

  1.排列在同一条直线上的16棵树之间有( )个间隔。 2.从第1棵树到最后1棵树之间有30个间隔,一共有( )棵树。

  3.在一条全长200米的小路一边植树,每隔4米种一棵(两端要种),一共需多少棵树苗?

  (二)闯关题

  1、工人叔叔准备在一条长200米的大桥一侧安装路灯,每隔40米安装一盏,问共需安装几盏?

  2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?

  3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  4、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?

  5、15个军人站成一列,每两个军人间距离为1米,这列队伍有多长?

  四、总结:通过这节课的学习,你们有什么收获?

  五、作业设计

  实地考察

  六、板书设计:植树问题

  两端要栽:棵数=间隔数+1;

《植树问题》教学设计15

  【教学目标】

  知识目标:

  1.利用学生熟悉的生活素材、通过动手操作等实践活动,让学生感悟间隔数与棵数之间的关系。

  2.让学生自主探索、讨论、交流,使学生发现并理解植树问题(两端要栽)的解题规律,并利用规律解决一些实际问题。

  能力目标:

  1.让学生经历分析、思考、解决问题的整个探究过程,并从中学习一些解决问题的方法和策略。

  2.通过探索间隔数与植树棵数之间的规律,初步体会化复杂为简单和一一对应的数学方法。

  情感目标:培养学生的分析意识,养成良好的交流习惯,感悟日常生活中处处有数学,体验学习的成功喜悦。

  【教学重点】:引导学生发现棵数与间隔数的关系。

  【教学难点】:理解间隔与棵数之间的规律并运用规律解决问题。

  【教学准备】:课件、学生用尺子、表格等。

  【教学过程】:

  一、谜语导入,引入新课

  师:同学们,你们喜欢猜谜语吗?

  生:喜欢。

  师:今天啊,老师带来一个谜语想和大家一起猜一猜,请看。两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。它是什么呢?你说说看?

  生:他是手。

  师:哦,他就是我们的手。我们的手作用可真大,又会写又会画还会算,而且我们的手上还有许多的数学奥秘,仔细看老师的手,你看到了数字几呢?

  生:5.

  师:哦,你们都看到了数字五,那你还能看到数字几呢?

  生:我看到了数字4、3、2、1。

  师:哦,你说的数字4、3、2、1表示的是什么啊?能告诉我们吗?

  生:手指的个数。

  师:哦,手指的个数。那我们说的五也是手指的个数,对吧。诶,除了手指的个数外你还能看到什么呢?

  生:还能看到手指之间的间隔。

  师:哦,手指之间还有一个个的间隔。同学们,在老师的手上五个手指之间到底有几个间隔呢?

  生:4个。

  师:数一数。1、2、3、4,恩,还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?

  生依次回答。

  师:恩,一个间隔。同学们,你们发现了手指数和间隔数之间的关系了吗?手指数比间隔数怎么样啊?

  生:手指数比间隔数多一。

  师:说得真完整。谁还说?

  生2:手指数比间隔数多一。

  师:哦,那间隔数比手指数呢?

  生3:间隔数比手指数少一。

  师:哦,谁还说?

  生4:间隔数比手指数少一。

  师:同学们,你能用一个算式来表示手指数和间隔数之间的关系吗?手指数等于什么呢?

  生1:手指数等于间隔数加一。

  师:哦,谁还说?

  生2:手指数等于间隔数加一。

  师:恩,还谁会说?好,你也来试试。

  生3:手指数等于间隔数加一。

  师:很好,那么间隔数等于什么呢?

  生1:间隔数等于手指数减一。

  师:恩。

  生2:间隔数等于手指说减一。

  师:恩,真聪明。好了,同学们,我们每个人啊,都有两件宝贝,一个呢是我们的双手,一个是我们的大脑。我们利用我们的大脑发现了这么多手上的奥秘,看来我们的数学真是无处不在啊。

  二、探究规律实现目标

  1、多媒体出示学校操场

  师:这里是哪里?

  生:操场!

  师:看来同学们对我们的学校真是非常熟悉,一下就认出了这就是我们的操场。为了美化我们的学校,校长打算在100米的操场小路上植树,可不是随便种的哦,校长可是有要求的。今天我们就要利用我们的双手和大脑一起来研究植树中的数学问题。-------植树问题。(板书课题)

  出示例题1:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共要栽多少棵树?

  师:读一读,在题中你读到哪些信息?谁来说一说?

  生:……………………

  师:一边表示什么?全长100米表示什么?每隔5米栽一棵表示什么意思?

  师:什么是两端都要栽?

  生:……………………..

  (1)师小结:用图演示说明:一边是小路的一侧,指左边或者右边,全长100米是指小路的`总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。

  (2)算一算,一共要栽多少棵树?

  (3)反馈答案:

  方法1:100÷25=20(棵)

  方法2:100÷25=20xx+2=22(棵)

  方法3:100÷25=20xx+1=21(棵)

  (4)师提出疑问:现在出现了三种答案,到底哪种答案是正确的呢?用什么方法来验证?

  三、自主探究,发现规律

  1.师用课件出示下表说:同学们想的办法真多,我们可以选择画线段图来验证。但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究、验证。如本题中假设路长只有5米、10米、15米、20米…每5米栽一棵(两端要栽),可栽几棵呢?下面我们一起来画线段图来分析、研究一下。(板书:复杂——简单)

  总长

  (米)

  间距

  (米)

  线段图例

  (图上厘米代表实际米的距离)

  间隔数

  (段)

  棵数

  (棵)

  5

  5

  10

  5

  15

  5

  20

  5

  ..

  ..

  ..

  ..

  2.先明确表意,再让学生探索完成上表中的内容。

  1.全班交流汇报表中内容。

  2.小组讨论:总长、间距和间隔数之间有什么关系?间隔数和棵数之间呢?

  3.把上表一分为二,让学生交流展示讨论结果。

  (1)出示下表交流汇报总长、间距和间隔数之间的关系。并借助数据,帮助学生理解这一关系的意思。(板书:总长÷间距=间隔数)

  总长

  (米)

  间距

  (米)

  间隔数

  (段)

  5

  5

  10

  5

  15

  5

  20

  5

  ..

  ..

  ..

  (2)出示下表交流汇报间隔数和棵数之间的关系。并借助表中数据,帮助学生理解这一关系的意思,但关键让学生理解为什么棵数比间隔数多1,渗透对应思想。(板书:间隔数+1=棵数)

  线段图例

  (图上厘米代表实际米的距离)

  间隔数

  (段)

  棵数

  (棵)

  1

  2

  2

  3

  3

  4

  4

  5

  ..

  ..

  ..

  4.教师小结

  (1)同学们非常能干,通过猜测、验证、讨论发现了植树问题中一个非常重要的规律,那就是如果再一条路上植树,两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1,而总长除以间距等于间隔数。对这个规律有没有不同意见?有没有不同说法?

  (2)填一填,反馈规律。

  ()×间隔数=总长棵数–1=()

  总长÷()=间距()-()=1

  四、活用规律,解决问题

  (一)回归疑问,初用规律

  以表格的形式摘要出例题1的重要信息后,师说:现在我们用刚得到的规律验证一下课前同学们做例题1的三种解法,哪种正确呢?说说你是怎样想的?

  总长

  (米)

  间距

  (米)

  间隔数

  (段)

  棵数

  (棵)

  100

  5

  (二)基础练习,再用规律

  师:同学们真会动脑筋!通过简单的例子,发现了规律,应用这个规律解决了复杂的问题。以后遇到“两端要种,求棵数”的植树问题,知道该怎么做了吗?请试一试:

  1、把下表补充完整

  总长

  (米)

  间距

  (米)

  间隔数

  (段)

  棵数

  (棵)

  100

  5

  20

  21

  200

  5

  200

  10

  1000

  8

  (三)深化练习,拓展规律

  师:同学们真能干!其实我们的生活中还存在着许多类似植树问题的现象。

  1、说一说,生活中的哪些情况类似植树问题呢?

  2、课件依次演示:

  不容易看见却能“想象”的树

  看不见却能“听得见”的树

  师说明:在数学上,我们把这类问题也归为“植树问题”。

  3、巧用规律,解决生活中类似问题

  (1)请你选一选:

  这排礼炮共有29个间隔,合()门礼炮。

  ①28门②29门③30门

  (2)下面哪个算式是正确的?

  一列共有25张凳子,有()个间隔?

  ①25+1=26个②25个③25-1=24个

  (3)公交车从东站到西站全长18千米,相邻两站的距离是2千米。一共有多少个站点?

  (4)一盒9响鞭炮,当听到第一个爆炸声开始计时,到第二声响起时,经过2秒钟。当听到最后一声响起时共经过几秒钟?

  五、拓展

  教师总结延伸:同学们这节课中运用化复杂为简单的数学思想方法发现了两端都栽的植树问题中的规律,并能利用规律解决生活中类似的实际问题。其实,植树问题还有一端栽一端不栽、两端都不栽、封闭图形,如正方形、圆形花坛等情况,这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。继续努力吧!

  六、全课总结,理顺知识

  这节课你有什么收获?

【《植树问题》教学设计】相关文章:

《植树问题》教学设计05-13

(热门)《植树问题》教学设计01-17

《植树问题》教学反思04-08

植树问题教学反思11-18

植树问题教学反思(精选)07-06

植树问题教学反思05-18

《植树问题》的教学反思05-16

(精)植树问题教学反思07-09

《植树问题》教学反思(必备)07-09