倒数教学设计

时间:2023-01-03 10:58:14 教学设计 我要投稿
  • 相关推荐

倒数教学设计

  在教学工作者实际的教学活动中,常常需要准备教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。优秀的教学设计都具备一些什么特点呢?下面是小编精心整理的倒数教学设计,仅供参考,大家一起来看看吧。

倒数教学设计

倒数教学设计1

  【教学内容】

  教材P28页中的例1、“做一做”及练习六中的部分练习题。

  【教学目标】

  1、知识与技能:通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

  2、过程与方法:引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

  3、情感、态度与价值观:通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

  【教学重点】

  理解倒数的意义,学会求倒数的方法。

  【教学难点】

  小数与整数求倒数的方法以及0、1的倒数。

  【教学方法】

  创设情境、启发诱导、合作交流、自学与讲授相结合等。

  【教具准备】

  课件

  【教学过程】

  一、激趣引入

  师:(板书“呆”)呆是一个上下结构的字,“呆”字如果上下颠倒就成了“杏”,语文中的文字有许多这样的构字规律,比如(杏——呆;吞——吴;音——昱;士——干……)那么在数学中的数也有这种规律吗?

  二、新知探究

  (一)探究讨论,理解倒数的意义。

  1、课件出示算式。

  先计算,再观察,看看有什么规律。

  3/8×8/37/15×15/75×1/51/12×12

  小组汇报交流

  2、出示倒数的意义:乘积是1的两个数互为倒数。

  3、你是怎样理解“互为倒数”的呢?能举例吗?

  4、倒数的表达方式。

  (二)深化理解。

  1、乘积是1的两个数存在着怎样的倒数关系呢?

  2、互为倒数的两个数有什么特点?

  3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?

  4、辨析:下面的说法对吗?为什么?

  A:2/3是倒数。()

  B:得数为1的两个数互为倒数。()

  C、7/15和15/7乘积是1,所以7/15和15/7互为倒数。()

  D、0的倒数还是0。()

  (三)运用概念。

  1、讨论求一个分数的倒数的方法。

  出示例1:写出其中3/5和7/2两个分数的倒数。

  (1)学生试做并讨论。

  (2)生汇报:

  (3)师生共同小结:求一个分数的倒数,只要把这个分数的分子、分母调换位置。

  2、怎样求整数(0除外)的倒数?请求出6的倒数是几?(出示课件)

  3、1的倒数是几?0的倒数是几?

  (1)学生试做并讨论。

  (2)生汇报:

  (3)师生共同小结:1的倒数是1,0没有倒数。

  4、小结。

  求一个数的倒数(0除外),只要把这个数的分子、分母调换位置。

  三、巩固练习

  1、写出下面各数的倒数。

  4/1116/97/84/1535

  2、判断。

  (1)真分数的倒数都是假分数。()

  (2)假分数的倒数都小于1。()

  (3)0的倒数是0,1的倒数是1。()

  四、课堂小结

  今天我们学习了有关倒数的哪些新知识?

倒数教学设计2

  教学目标:

  1、通过独立计算以及小组讨论等活动认识倒数,理解倒数的意义,能准确的说出,互为倒

  数的两个数乘积为一,并且相乘的两个数分子、分母颠倒了位置

  2、通过合作交流探讨出求一个数的倒数的方法,并能正确的求出一个数的倒数。

  3、在探究交流的活动中,提高观察、抽象、概括的能力,发展数学思维。

  教学重点:

  认识倒数并能准确的求一个数的倒数。

  教学难点:

  小数求倒的方法

  教具准备:

  课件

  教学流程(师生活动)设计

  备课组成员

  修改意见

  一、创设情境,提出问题。

  1、师:请同学们完成一下计算:

  2、组织学生观察以上算式,说出你的发现。

  3、你还能再列举出其他类似的算式吗?

  4、师:乘积是1的两个数之间存在着一种特殊的关系——互为倒数。

  今天我们就一起来认识倒数,研究倒数。

  二、探索交流,解决问题。

  ①倒数的意义

  问题 1:请认真阅读课本第 28 页例 1 以上的部分,然后告诉老师

  什么是倒数?互为倒数的两个数有什么特点?“互为”两个字又是什么

  意思?先独立思考,然后小组讨论。

  生汇报,师引导交流评价。

  【随堂小测 1】第 29 页第 2 题的(1)( 2)题

  ②求一个数的倒数

  问题 2:通过交流、探讨,你发现怎样才能正确的求一个数的倒数?

  独立思考后,小组间讨论。

  【随堂小测 2】第 28 页做一做

  问题 3:特殊数 0 和 1 的倒数你会求吗?你有什么发现?

  小结:1 的倒数是 1,0 没有倒数。

  问题 4:0.45 的倒数你会求吗?说说你的思考过程。

  独立思考后,小组间讨论。

  【随堂小测 3】第 29 页第 2 题的(3)( 4)

  思考:互为倒数的两个数有什么特点?如何求整数的倒数?如何求

  分数的倒数?

  三、巩固应用,内化提高 。

  四、回顾整理,反思提升。

  通过这节课的学习,你有什么收获?有什么感受

  板书设计

倒数教学设计3

  教学内容:

  课本28页 倒数的认识

  教学目标:

  1.通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

  2.使学生经历倒数意义的概括过程,提高衙门观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。

  3.通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

  教学重点:

  认识倒数并掌握求倒数的方法

  教学难点:

  小数与整数求倒数的方法

  教学准备:

  PPT课件,卡片

  教学过程:

  一、情境导入,引出问题

  1、列举数学中两个数乘积是1的算式。

  2、揭示课题:倒数的认识。

  (设计意图)问题是数学的心脏,是学生探究的起点和动力,在谈话、游戏情境中引导学生发现问题,提出问题。

  二、合作探究、解决问题

  1.探究倒数的意义。

  (1)观察刚才列举的例子,找出特点。

  (2)出示倒数的意义:乘积是1的两个数互为倒数。

  (3)小组讨论,什么是倒数?

  学生独立思考后,组内交流。

  全班汇报,教师根据学生的汇报点拨引导。

  师生共同归纳倒数的意义:乘积是1的两个数叫做互为倒数。(教师板书)

  (4)举例子:3/8×8/3=1,3/8和8/3互为倒数,3/8的倒数是8/3,8/3的倒数是3/8.

  (5)口答练习:

  2.探究求一个数(分数)的倒数的方法。

  (1)小组合作,自学例1。

  (2)小组派代表交流例1

  (3)学生交流求一个分数倒数的方法。

  师:互为倒数的两个数相等吗?怎么样表示它的结果?也可用—(破折号)表示。

  (4)教师引导质疑:0有没有倒数?为什么?学生讨论释疑。

  1×( )=1,所以1的倒数是1。而0×( )=1呢?

  1的倒数是它本身,0没有倒数。

  (5)引导学生概括求倒数的方法。

  求一个数(0除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。

  (6)练习:师生对口令,找倒数。

  老师说一个数,学生快速抢答出它的倒数。

  3、探究求整数、小数、带分数的倒数方法

  师:同学们已经会求一个分数的倒数了。想一想,我们还学过哪些数?(整数、小数、带分数),那么怎么样求整数、小数、带分数的倒数呢?选择一种,在小组内探究。

  A:学生选择一种研究,教师巡视指导。

  B:学生交流汇报,教师分别板书一例。

  (设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。

  三、巩固联系、拓展深化。

  1.请你填一填。

  2.我是小法官。

  3.游戏:找朋友。

  师:老师这里有一些卡片,上面写了一些数字,哪两个数是互为倒数关系,哪两个数就是好朋友。请你把这样的两张卡片找出来。

  (设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。

  四、总结反思

  这节课你们有什么收获?还有什么疑问?

  (设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

  板书设计: 倒数的认识

  乘积是1的两个数互为倒数。

  求一个数(0除外)倒数的方法:

  把这个数分子、分母调换位置。

倒数教学设计4

  教材分析:

  这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。

  设计理念:

  本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程。在求一个数的倒数时,让学生先学后教,激发学习热情,并培养学生观察、归纳、推理和概括的能力。

  教学目标:

  使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  能力目标:

  培养学生观察、归纳、猜想、推理和概括的能力。

  情感目标:

  提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。

  教学重点:

  使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  教学难点:

  使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  教学过程:

  一、课前谈话突破难点

  1、谈话——蕴含“两个”,突破“互为”

  师:老师也愿和六(1)班的同学成为朋友,你们愿意吗?(愿意)那老师就是你们的…(朋友),你们是老师的…(朋友)。你们和老师互为朋友。(指板书:互为)

  二、导入揭题,引导质疑

  师:其实在我们的数学中也有类似的情况。今天这节课就让我们一起来发现数学中的类似问题。揭题——(板书:倒数的认识)

  师:看到“倒数”这个数学新名词,你的脑子里产生哪些问题。

  预设:什么是倒数?怎样求倒数?……

  这节课一起来探究这些问题?

  三、创设活动情景,理解概念——“倒数是什么”

  师:我们刚刚研究了分数乘法,老师想了解大家掌握的怎么样?请看计算。

  1、在分类中理解“是什么”

  ①5/8×8/5②0。25×4③3/4+1/4

  ④1。6—3/5⑤13/7×7/13⑥3/2×6/5×5/9

  计算后你有什么发现?

  师:如果请你将这六个算式分成两类,你准备怎么分?

  (学生汇报:乘积是1。)[适当处板书:乘积是1]

  归纳总结:分类的标准不同,得到的答案也不同,今天我们就研究这一类的算式。

  师:这三个算式有什么共同的特征吗?

  预设:乘积是1。

  2、举例感悟“怎么做”

  师:你还能举出这样的例子吗?

  还能举出与这些算式不同的例子吗?还能举出不同的算式吗?

  归纳总结:像刚才举的这些例子,他们都有一个共同的特点!(乘积是1)在数学上“乘积是1的两个数互为倒数”。如5/8×8/5=1,我们就可以说5/8和8/5互为倒数,还可以怎么说?如我们表述朋友的关系。

  5/8倒数是8/5,8/5倒数是5/8。

  师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  ②0。25×4这两个数的关系可以怎么说?请您告诉你的同桌。

  (学生活动)

  ⑤13/7×7/13

  3、在思辨中深入理解

  师:能说3/4和1/4互为倒数吗?为什么?

  师:能说3/2、6/5和5/9互为倒数吗?为什么?

  四、运用概念,探究方法——“怎样求倒数”

  过渡:大家对倒数理解的很不错,那么我给你一个数你能找出它的倒数吗?

  (投影,出示例2)

  1、求下面各数的倒数

  3/5267/20。610。250

  学生尝试。

  回报交流。

  师:这组数中,你最喜欢求哪些数的倒数?为什么?

  预设:

  生1:我最喜欢求分数的倒数,因为把分数的分子、分母调换位置,它们的乘积就是1。很容易,所以我喜欢求。

  生2:我最喜欢求1的倒数,因为1的倒数可以写成分数,分子、分母调换位置还是,1的倒数就是1。很有趣,所以我喜欢求1的倒数。生:进行计算。

  师:这组数中,你最不喜欢哪个数的倒数?

  预设:

  生1:我最不喜欢求0的倒数,因为0如果写成分数,要是调换分子、分母的位置就是,0不能作分母(0不能作除数)。0好像没有倒数。

  生2:再说0乘任何数都等于0,也不等于1呀,0肯定没有倒数。

  师:那你是怎样求26的倒数的呢?

  你是怎样求一个小数的倒数的呢?

  归纳总结:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

  生1:求一个数的倒数,只要把分子分母调换位置。

  2、强调书写格式

  师:刚才老师看到有学生是这样写的,可以吗?(3/5=5/3)

  归纳总结:互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。

  先说说下面每组数的倒数,再看看你能发现什么?

  (1)3/4的倒数是()(2)9/7的倒数是()

  2/5的倒数是()10/3的倒数是()

  4/7的倒数是()6/5的倒数是()

  (3)1/3的倒数是()(4)3的倒数是()

  1/10的倒数是()9的倒数是(

  nbsp;1/13的倒数是()14的倒数是()

  由学生说出各数的倒数。

  师:请你仔细观察,看能从中发现什么,发现得越多越好。

  师:小组间可以先互相说一说。

  汇报:

  预设:

  生1:我从第一组中发现真分数的倒数都是假分数。

  生2:我从第二组中发现假分数的倒数是真分数或者假分数。

  生3:真分数的倒数都小于1,假分数的倒数大于1。

  3、填空:

  7×()=15/2×()=()×0。25=0。17×()=1

倒数教学设计5

  【教案背景】

  《倒数》是北师大版小学数学五年级下册第三单元的内容。这部分内容是在学习了分数乘法的基础上,进行教学的。它既与前面的内容有一定的联系,又具有相对的独立性,它是学习分数除法的关键知识,能否正确理解掌握倒数,决定着学生学习分数除法的水平,是学习分数除法的前提和必要条件。

  【教学内容】

  北师大版小学数学五年级下册第24页的内容。

  【教材分析】

  《倒数》主要有两部分内容:一是倒数的意义,即什么是倒数;二是倒数的求法。为了使学生对倒数意义的理解更深刻,教材列举了8道两个数乘积为1的乘法算式,设计了“算一算”的活动,目的就是想让学生通过实际计算更直接地感受这组算式中积的特点,从而在观察的基础上进一步发现这些算式的共同特点。教材中的文字内容,易于学生理解倒数的意义,强调倒数是对两个数来说的,不能孤立地说某一个数是倒数。教材中的“试一试”环节,及时巩固新知,教师还可以进一步规范学生的数学语言。“想一想”环节,解决1和0的倒数的问题。“练一练”环节 ,进一步理解和巩固倒数的求法。

  【学情分析】

  结合本班学生实际和教材特点。学生在理解倒数的意义时,对“互为”一词,会有一些困难,要联系本人和同学们相互成为好朋友来理解,强调倒数的互相依存性。学生对乘积是1,理解时可能会只关注得数是1,要进一步引导学生理解“和、差、商为1时,两个数不互为倒数”。因此,在教学时要创设必要的情境,让学生易于接受。

  同时,结合以后学习的需要,教师适当补充带分数、纯小数、带小数这些数的倒数的求法,在掌握分子、分母调换位置求一个数的倒数的方法的基础上,引导学生迁移学习,逐步掌握“先变形,再换位”的方法求倒数。

  【教学目标】

  1、在计算、比较、观察中,发现倒数的特征并理解倒数的意义。

  2、掌握求一个数的倒数的方法。

  3、在教学活动中,培养学生归纳、推理能力。

  【教学重点】

  发现倒数的特征,理解倒数的意义。

  【教学难点】

  掌握求一个数的倒数的方法。

  【教学方法】

  创设情境、激趣质疑、自主探究、合作学习。

  【教学课时】

  一课时

  【教学过程】

  一、创设情境,导入新课

  1、谈话:同学们,由于教师调动本学期我成了咱们班的数学老师,经过这几天的相处,我们都互相成了朋友。谁能告诉大家,你是怎样理解“互相成了朋友”这句话的?

  2、猜字谜:

  同学们说的很好!咱们再来猜个字谜吧!

  “吞”字上下颠倒是什么字?(吴)

  “呆”字上下颠倒又是什么字?(杏)

  3、引入新课:汉字真奇妙啊,把一个字的上下部分颠倒就可能会变成另外一个字,其实,在数学里也有这种奇妙的现象!你们想知道吗?猜猜看,谁能举出这样的例子。例如把倒过来就变成,颠倒就变成了,也就是( 7 )。我们给这些数起个名字就叫倒数(板书课题:倒数)

  二、观察比较,抽象概念 71233217

  1、课件出示课本24页8道算式,引导学生观察。

  3111812×=() 2×=() ×=() ×10=( ) 22831110

  915761×=() 7×=() ×=() ×5=() 776955

  2、分组讨论: (1)、这些算式有什么特点?(预设:此处根据学生的回答,分子与分母相互颠倒。)

  (2)、这些算式的结果有什么特点?(预设:此处根据学生的回答,乘积是1。)

  3、小组交流,教师点评。

  4、引导归纳倒数的概念:乘积是1的两个数互为倒数。(教师板书,学生口述。) 5、倒数的概念中哪些词比较重要?

  (预设:此处根据学生的回答,依次理解两个数、乘积是1、互为。) 同学们可真是火眼金睛啊,关键词都找出来了!让我们再大声说一次什么是倒数。(生齐说概念 )倒数还有什么特点呢?(分子和分母相互颠倒)

  6、教师小结:互为倒数的两个数的乘积必须是1,倒数是对两个数来说的,它们是互相依存的关系,必须说一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

  7、你能说说大屏幕上的口算题中,谁和谁互为倒数吗?谁的倒数是谁?

  生:因为( )×( )= 1 ,所以( )的倒数是 ( ),( )的倒数是 ( ),( ) 和( ) 互为倒数。

  (此处引导学生说4句话,在进一步理解倒数意义的基础上,规范学生的数学语言)

  8、你还能举出其它的例子来吗?请同桌同学互相说一些互为倒数的

  例子,他说得对吗?你们怎么知道是对的?

  (预设:用倒数的概念验证,把两个数相乘,看结果是否等于1。如果学生在此处举出特殊数1、0,则顺着学生的想法,及时展开讨论。如果没有则在下一环节进行。)

  9、及时练习,巩固新知:我来当小老师。(判断对错,说清理由。)

  (1)、2是的倒数。 ( )

  (2)、和是1的两个数互为倒数

  (3)、计算结果得1的两个数互为倒数。() (4)、因为×=1,所以是倒数。( )

  三、引导探究,掌握方法

  1、同学们已经认识了倒数,那么你们能根据刚才所学找到下面各数的倒数吗?(能)那就请同学们进入闯关环节,先独立完成,遇到困难可以同伴互助,看看哪些同学和小组能连闯三关,开始!

  2、生开始做题,师巡视。(课件出示)

  第一关:的倒数是( ),的倒数是(),的倒数是()。 第二关:4和( )互为倒数,5和( )互为倒数。

  第三关:1的倒数是( ),0的倒数是( )。

  3、全班交流反馈。

  那么0的倒数又是几呢?(有争议)预设:

  生:因为1的倒数是1,所以0的倒数是0.

  生:可以把0看做,他的倒数就是。

  生:对,0不能做分母,也不能做除数,所以0没有倒数。

  生:0与任何数相乘都不得1,而是得0,所以我也觉得0没有倒数。 师:小结强化0的确没有倒数。

  4、小结闯关情况:连闯三关的同学起立,你们真是善于动脑的同学,好样的,庆祝一下!掌声送给你们!

  5、归纳方法:同学们通过闯关已经学会求一个数的倒数了,请你试 011034521923322312

  着总结出求一个数的倒数的方法。

  (1)课件:求一个数的倒数,只要把这个数的分子、分母调换位置。

  (2)请问:这个数中包含0吗?0有没有倒数呢?

  (3)完成板书:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

  (4)课件:演示方法

  6、质疑:关于如何求一个数的倒数大家还有什么疑问吗?

  预设:⑴生:我想知道带分数的倒数怎么求?

  ⑵生:老师我也有一个问题:小数有倒数吗?

倒数教学设计6

  活动目标:

  1、学会顺数与倒数,学会顺接数、倒接数。

  2、在游戏中感知倒数与顺数的规律,开拓幼儿的思维发展。

  3、情感上:使幼儿在心情愉悦的情况下,积极主动的学习,体验数学活动的快乐,并感受集体活动的乐趣。

  活动重点:

  理解顺数与倒数的内在规律。

  活动难点:

  学习倒数、倒接数

  活动准备:

  1、课件。

  2、幼儿操作板人手一份。

  活动过程:

  一、以三只小猪学数学引入。

  1、今天三只小猪要给小朋友们讲三兄弟捉迷藏时发生的有趣的事情。(教师配合课件,讲故事"三只小猪捉迷藏")

  2、概况故事中的发生的数学趣事,老大不会10以内的顺数和倒数,更不会10以内的顺数接着数和倒数接着数。

  二、请小朋友们配合课件"数苹果",一起学习10以内的顺数和倒数。教师小结:顺数是从小的数开始数,比如第一个数字是1,顺数的方法就是1、2、3、4、5、6、7、8、9、10,倒数就是从大的.数字往小的数字数,比如第一个数字是10,倒数的方法就是10、9、8、7、6、5、4、3、2、1。

  三、欣赏童谣《我们一起数房子》,通过欣赏和跟唱童谣,巩固学到的顺倒数知识。

  四、幼儿操作活动。

  1、猪妈妈喊小猪回家吃饭了,可是小猪的花园旁有坏狐狸在蹲着,想要吃他们三兄弟,猪妈妈在花园里布置了道路迷宫,只有走对正确的路才能回到家。正确的路上按照倒数的方法表示着10、9、8、7…….的数字,请小朋友们用笔按照倒数的方法把所有的数字连起来,帮助小猪回家。

  2、幼儿操作,教师巡回指导。

  3、表扬完成的又快又好的幼儿。

  五、游戏活动。

  翻牌接龙游戏:用倒数的方法接龙,教师翻开一张牌(如红色6),手持红色数字6的幼儿要立刻站起来大声的说出"6",而手持红色数字"5""4""3""2""1"的幼儿依次接上,要求大声的说出自己的数字。

  六、顺数倒数在生活中的运用。

  1、电梯上下楼时显示的数字顺序;红绿灯;微波炉等。

  2、出示"快乐暑假倒计时"课件,让幼儿先用顺数的方法数一数今天离放暑假还有几天(跟着标记好的日历,全班一起数),得到数字是"7",引导幼儿想想,今天过完了,明天还剩几天?后天还剩几天?大后天呢?从而使幼儿初步认识到倒数的方法在计算重要日子时的使用方法。

  七、结束

  老师在班级活动厅里画好了"跳房子"的格子,小朋友们回班后可以用顺数和倒数的方法一起玩"跳房子"。

倒数教学设计7

  教学目标:

  1、 使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  2、 培养学生观察、归纳、推理和概括的能力。

  教学过程

  一、创设活动情景,引入概念

  出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?

  小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的……)

  师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

  让学生读一读:“倒数”。

  出示倒数的意义:乘积是1的两个数互为倒数。

  二、探究讨论,深入理解

  让学生说说对倒数意义的理解。

  提问:“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)

  判断下面的句子错在哪里?应该怎样叙述。

  因为3/4×4/3=1,所以3/4是倒数,4/3也是倒数。

  三、运用概念,探讨方法

  出示例2,找一找哪两个数互为倒数?

  汇报找的结果,并说说怎样找的?

  1、 看两个分数的乘积是不是1;

  2、 看两个分数的分子与分母是否分别颠倒了位置。

  讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)

  通过具体实例总结归纳找倒数的方法。

  (1)找分数的倒数:交换分子与分母的位置。

  例:

  (2)找整数的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。

  例:

  四、出示特例,深入理解

  看一看,例2中的哪些数据没有找到倒数?(1,0)

  提问:1和0有没有倒数?如果有,是多少?

  小组讨论、汇报。

  1、 关于1的倒数。

  因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

  也可以这样推导:

  1的倒数是1。

  2、 关于0的倒数。

  因为0与任何数相乘都不等于1,所以0没有倒数。

  也可以这样推导:

  分母不能为0,所以0没有倒数。

  五、巩固练习

  1、 完成“做一做”。先独立做,再全班交流。

  2、 练习六第3题。

  用多媒体或投影逐题出示,学生判断,并说明理由。

  3、 同桌进行互说倒数活动(练习六第2题)。

  六、总结

  今天学习了什么?

  什么叫倒数?怎样找出一个数的倒数?

倒数教学设计8

  教学目标:

  1、是学生通过探究活动,认识倒数的意义,掌握找倒数方法。

  2、培养学生观察、归纳、推理和概括的能力。

  教学过程

  一、创设活动情景,引入概念。

  出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?

  小组汇报交流。(通过计算,发现每组算式的乘积都是1.通过观察发现相乘的两个分数的分子和分母的位置是颠倒的)

  师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数就做倒数。

  让学生读一读:倒数。

  出示倒数的意义:乘积是1的两个数互为倒数。

  二、 探究讨论,深入理解。

  让学生说说对到数意义的理解。

  提问:互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)

  判断下面的句子错在哪里?应该怎样叙述?

  因为3/44/3=1,所以四分之三是倒数,三分之四也是倒数。

  三、运用概念,探讨方法。

  出示例2,找一找那两个数互为倒数?

  汇报找的结果,并说一说怎样找到的?

  1,看两个分数的乘积是不是1;

  2,看两个分数的分子与分母是否分别颠倒了位置。

  讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)

  通过具体实例总结归纳找倒数的方法。

  分子、分母交换位置

  例:3/55∕3 3∕5的倒数是5∕3

  (2)找倒数的倒数:先把整数看成分母是1的分数,在交换分子和分母的位置。

  分子、分母交换位置

  例:6=1∕6 6的倒数是1∕6.

  四、出示特例,深入理解

  看一看。例2中的那些数据没有找到倒数?(1,0)

  提问:1和0有没有倒数?如果有,是多少?

  小组讨论、汇报。

  1、关于1的倒数。

  因为11=1,根据乘积是1的两个数互为倒数,所以1的倒数是1. 交换分子、分母的位置

  也可以这样推导:1= 1∕1=1,1的倒数是1.

  2、关于0的倒数。

  因为0与任何数相乘都不等于1,所以0没有倒数。

  交换分子、分母的位置

  也可以这样推导:0=0∕11∕0,分母不能为0,所以0没有倒数。

  五、巩固练习

  1、完成做一做,先独立做,再全班交流。

  2、练习六第3题。

  用多媒体或投影逐题出示,学生判断,并说明理由。

  3、同桌进行互说倒数活动(练习六第2题)。

  六、总结

  今天学习了什么?

  什么叫倒数?怎样找到一个数的倒数?

倒数教学设计9

  教学目标:

  1、认识倒数,理解倒数的意义,掌握求倒数的方法。

  2、 提高学生观察、比较、、概括的能力以及感悟“变通”的数学思想。

  教学重点:倒数的意义与求法。

  教学难点:理解“互为”的意义,明确倒数只是表示两个数间的关系。

  教学准备:卡片(6条规律),练习纸(课后习题4),比赛用纸(表格),PPT课件(比赛内容,延伸等)

  一、 游戏比赛

  1、 学习之前,让我们先来个“设计接力”赛,怎么样?

  比赛内容:请你设计有两个因数相乘的算式,并使乘积为1。

  比赛规则:每人每次设计一式,写完后按顺序立即传给小组内其他成员。

  比赛时间:1分钟。

  比赛结果评定标准:写得又对又多的为胜。(重复的只能算一个)

  2、组织评议:实物投影,每组一位学生读算式,全班监督是否正确。根据数量评选出优胜小组。

  二、倒数的意义

  1、短短一分钟,大家就设计了这么多的算式,如果再给你们一些时间,你们还能写吗?能写多少个?

  所有这些算式中,两个因数的乘积都为1,像这样,乘积是1的两个数互为倒数。(板书乘积是1的两个数互为倒数,重点标“互为”)。

  2、 理解“互为”。

  (1)问:“互为”是什么意思?(互相)

  一个人能说互相吗?互相肯定是发生在(两个人之间)。所以,“互为”二字充分说明了倒数应该是(两个数)之间的关系。

  (2)(结合学生的算式:)比如()乘()等于1,所以()和()互为倒数,也可以说(A)是(B)的倒数或者(B)是(A)的倒数。

  (3)指名学生结合另外的算式说说谁是谁的倒数。问:我们能单独说()是倒数吗?

  (4)想一想,在我们学过的数的概念中,哪些数也不能单独表示一个数?(约数、倍数、互质数)

  (5)选择一个算式,跟你的同桌说说谁是谁的倒数。

  三、倒数的写法

  1、刚才,你们设计这些乘法算式时有什么窍门吗?(先写一个分数,再把这个分数的分子和分母倒一下,就是另一个因数了。)

  为什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相约分,使得数是1)

  (若有小数乘法。问:0.25*4=1这道算式,我怎么没看出分子分母倒一下呢?)

  (0.25就是,分子分母倒过来是,就是4)所以0.25的倒数是4。

  2、根据你的经验,你能说出它们的倒数吗? (显示: 6)

  第一个:应该怎样规范的书写呢?请你在自备本上试一试。指名板演。

  最后两个说说是怎样想的。

  3、你觉得应该怎样求一个数的倒数?

  (把分数的分子分母调换位置)

  4、一个数的倒数你会求了吗?谁愿意上来考考大家?你说一个数,我们说出它的倒数。

  在报数中得出:1的倒数是它本身。0没有倒数。卡片出示,分别分析为什么。

  (有可能有学生报小数或带分数,集体探讨怎样求小数或带分数的倒数。)

  四、深化认识

  1、小组合作

  请大家拿出练习纸,先找出下面每组数的倒数,再看看你能发现什么。

  2、 交流发现:

  师:第一组数的倒数各是多少,你们有怎样的发现?谁愿意上来展示一下。

  (3/4的倒数是4/3,2/5的倒数是5/2,6/11的倒数是11/6,这组分数都是真分数,它们的倒数都是假分数。)

  师:是不是所有真分数的倒数都是假分数?

  (出示卡片:所有真分数的倒数都是假分数)

  师:谁来说说第二组

  (3/2的倒数是2/3,6/5的倒数是5/6,9/7的倒数是7/9,这组分数都是假分数,它们的倒数都是真分数。)

  师:是不是说所有假分数的倒数都是真分数?

  (不是所有的假分数的倒数都是真分数,如果假分数的分子和分母相同,它的倒数就仍然是假分数。)

  师:你说的就是等于1的假分数。 而第二组中的分数都是什么样的假分数?

  (都是大于1的假分数。)

  所以——(卡片出示:大于1的假分数的倒数都是真分数。)

  师:第3组呢?

  (…… 这组分数的倒数都是整数。)

  这组分数有什么特点?(分子都是1,即分数单位)而它们的倒数都是(整数)

  (卡片出示:分数单位的倒数都是整数)

  师:第四组呢?

  (…… 这组都是整数,整数的倒数都是分子为1的真分数。)

  师:是不是所有整数的倒数都是分数单位?

  (出示:非零整数的倒数都是分数单位)

  师:通过大家的研究,我们发现倒数有这样的规律——(齐读)。

  3、现在,你认识倒数了吗?真的认识了?那就请你来辨一辨。(课件显示)

  (1)、得数是1的两个数互为倒数。

  (2)、9的倒数是9/1。

  (3)、1的倒数是1,0的倒数是0。

  (4)、1/6是倒数。

  (5)、因为x×y=1(x≠0,y≠0),所以x和y互为倒数。

  (6)、所有假分数的倒数都是真分数。

  4、今天这节课,我们学习了——。你觉得最令你高兴的收获是什么?

  关于倒数,你还想知道些什么呢?

  思考一:1的倒数是多少?你觉得应该怎样求一个带分数的倒数?

  思考二:小数有倒数吗?如果有,该怎样求?

  五、学科融合

  最后,让我们轻松一下。我们来看看语文中有趣的“倒数”现象。(课件显示)

  如汉字“吴——吞”,“杏——呆”;很有趣吧!

  接下来请同学们欣赏一幅对联的上联:“客上天然居,居然天上客 ”, 这幅对联出自乾隆皇帝之手。清代的北京有个酒楼叫“天然居”,一次,乾隆到那儿吃饭,触景生情,以酒楼为题写了对联,上联就是这句:客上天然居,居然天上客。

  后来民间有人对出了绝妙的下联:僧游云隐寺,寺隐云游僧。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。

  在人类的社会发展过程中,有很多的现象有着惊人的相似,只要我们善于观察,做一个有心人,我们也能发现其中有趣的相似现象。

倒数教学设计10

  教学目标:

  (1)知识目标:通过计算、观察、概括,使学生理解倒数的意义,掌握求不同种类数的倒数的方法,并能发现一些规律。

  (2)能力目标:通过引导学生自主探索学习,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳的能力。培养学生的分析、推理、判断等思维能力,发展学生的思维

  (3)情感目标:提高学生学习数学的兴趣,培养学生独立探索精神和合作交流意识,并渗透“事物之间相互联系、相互依存”的辨证思想。

  教学重点:倒数的意义和求法,理解倒数的意义,会求不同种类数的倒数。

  教学难点:熟练正确的求不同种类数的倒数,发现不同种类数的倒数的一些特征。1、0的倒数,小数的倒数。

  教学准备:写有数的纸片。

  教学过程:

  一、导入新课。

  请同学们观察下面两组字:杏–呆,吴–吞。

  师提问:你们发现了什么,能说说你们的发现吗?小组内说一说。然后让学生个别说。同学们给予评价。

  学生:我们发现这两组字都是由相同的字构成的,都是上下结构。上下两部份交换位置就成了另一个新字。

  师说:在数学中,有没有像这样的数字上下两部份交换位置成了另一个新的数,这样的两个数之间有什么联系呢?

  学生:有,是分数,上面部份是分子,下面部份是分母。分数的分子和分母交换能成一个新的分数。比如:2/3和3/2、6/5和5/6。

  师:这样的两个数我们给它们取个名叫互为倒数。(板书:倒数的认识)

  二、新知探究。

  (一)小组验证互为倒数的两个数的特点。

  师:那好,我们就进行一个小小的比赛。我给大家30秒的时间,请你写出分子与分母交换了位置的两个数,看谁写得多。

  师:你们刚才写的所有算式都有怎样的共同点?

  学生:我们写的每组数的分子与分母的位置是调换了的。

  师:请第一组用加、第二组用减、第三组和第四组用乘的方法验证刚才2/3和3/2、6/5和5/6,能发现什么规律?(分小组活动)

  板书:第一组:3/2+2/3=9/6﹢4/6=13/6

  6/5+5/6=36/30+25/30=61/30

  第二组:3/2-2/3=9/6-4/6=5/6

  6/5-5/6=36/30-25/30=11/30

  第三组和第四组:3/2×2/3=16/5×5/6=1

  师问:互为倒数的两个数相加、相减、相乘有何特点?

  学生:互为倒数的两个数相加的和不相等,互为倒数的两个数相减的差也不相等,互为倒数的两个数相乘的结果都是1。

  师:互为倒数的两个数的乘积是1,乘积是1的两个数互为倒数。(板书:倒数的概念)

  指出:互为倒数的两个数分子分母互相颠倒,这样的两个数的乘积一定是1。比如:2/3和3/2互为倒数,2/3的倒数是3/2,3/2的倒数是2/3;6/5和5/6互为倒数……

  2、试下面数的倒数。

  2的倒数是0。2的倒数是0。25的倒数是

  让学生说一说怎样求一个数的倒数,用什么方法能快速求出来?(引导学生把小数化成分数:0。2=1/5,想:0。2=1/5,1/5的倒数是5,所以0。2的倒数是5。0。25=1/4……然后再求它们的倒数)让尽可能多的学生说说它们是怎么互为倒数的。

  明确:互为倒数的两个的分子分母互相颠倒,这样的两个数的乘积一定是1。

  (二)课堂练习:求一个数的倒数。

  1、质疑:互为倒数的两个数有什么特征?谁能举例说明什么是互为倒数。

  2、师:完成教材P45“填一填”

  5/87/462/310.8(补充)

  让学生与同桌说一说自己的想法,知道求小数的倒数需先把小数化成分数。

  3、讨论:0有倒数吗?学生交流。

  板书:0和任何数相乘都不能得到1,所以0没有倒数。

  4、完成P47课堂活动的对口令。

  汇报时让学生说一说谁是谁的倒数。

  (小结:刚才我们就学习了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

  5、出示判断:

  (1)得数为1的两个数互为倒数。()

  (2)因为9/4×4/9=1,所以9/4和4/9都是倒数。()

  (3)互为倒数的两个数乘积一定是1。()

  (4)因为1/3+2/3=1,所以1/3和2/3互为倒数。( )

  (5)a是1/a的倒数,1/a是a的倒数。()

  (6)a/b是b/a的倒数,b/a是a/b的倒数。()

  6、探索求真分数和假分数的倒数的特点。

  学生分小组讨论,把讨论的结果记录在本子上,然后小组让代表汇报。

  师生共同小结:真分数的倒数一定是假分数。假分数(1除外)的倒数一定是真分数。

倒数教学设计11

  教学内容:

  教科书第50页例7及相应的练习

  教学目标:

  1、使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。

  2、培养学生举例、观察、比较、抽象概括能力。

  3、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。

  一、口算导入

  分别出示一四组算式(加减乘除),指名报答案,找这一组算式的共同点(和是1,差是1,积是1,商是1);

  师:今天,我们就一起来研究乘积是1的这一类算式。同学们,你能自己写一些乘积是1的算式吗?老师给你30秒时间,看看哪位同学写得既对又多。

  展示个别学生作品,大家写的算式都有一个共同点:(乘积是1)。(板书)

  师:乘积是1的两个数到底存在什么样的关系呢?请大家把书翻到第50页,自学。

  指名回答,(乘积是1的两个数互为倒数。)(板书)相机揭示课题(认识倒数)(板书)

  二、教学新课

  师:你认为在这一句话中有哪些词比较关键?师划出,逐一解读。先强调乘积及1。

  (1)问:“互为”是什么意思?(互相)

  一个人能说互相吗?互相肯定是发生在(两个人之间)。所以,“互为”二字充分说明了倒数应该是(两个数)之间的关系。

  (2)(结合学生的算式:)比如()乘()等于1,所以()和()互为倒数,也可以说(A)是(B)的倒数或者(B)是(A)的倒数。

  (3)观察互为倒数的两个数,看看它们的分子、分母有什么特点?指名回答。

  (4)指名学生结合另外的算式说说谁是谁的倒数。问:我们能单独说()是倒数吗?对啊,倒数相互依存的,这种存在相互依存关系的数,我们在五年级时就学习过,大家还记得吗?(倍数、因数)

  (5)选择一个算式,跟你的同桌说说谁是谁的倒数。

  三、求一个数的倒数

  1、刚才,你们在短时间内写出了很多乘积是1的算式,在设计这些乘法算式时有什么窍门吗?指名回答(先写一个分数,再把这个分数的分子和分母倒一下,就是另一个因数了。)

  为什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相约分,使得数是1)

  讨论到这里,你知道怎样求一个数的倒数了吗?指名回答。大家同意吗?

  好的,接下来,老师要来考考大家了,有信心吗?我报一个数,你们一起说出这个树的倒数,5/9的倒数是9/5,7/6,6/10,11/8,3/7

  2、师:同学们已经学会了求真分数、假分数的倒数,想一想,我们还学过哪些数?(整数、小数、带分数)那么,怎样求整数、小数、带分数的倒数呢?列出几个数:

  自主探究

  a四人为一小组,选择一种情况研究

  b生交流汇报,师板书例子

  c引导概括求倒数的方法

  3、同学们真棒,通过自己的探索,学会了求一个数的倒数。那么有没有同学知道1的倒数呢?为什么?(1可以看成1/1,所以倒数仍是1,或者1×1=1)(板书)

  那0的倒数呢?为什么?指名回答(0乘任何数都得0,即0乘任何数都不可能等于1。)(板书)

  4、归纳如何求一个数的倒数

  求一个数的倒数(0除外),只要把它的分子、分母交换位置。

  5、师:学了那么多,下面就让我们一起来练一练吧(书本50页,练一练)

  展示,核对,强调互为倒数的两个数之间不能用“=”连接。

倒数教学设计12

  教学内容

  人教版六年制小学数学课本第十一册《倒数的认识》。

  教学目标:

  1、智力目标:使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。

  2、非智力目标:培养学生举例、观察、比较、抽象概括能力;通过自主学习获得成功的体验,提高学习数学的兴趣。

  教学想法:

  去年的毕业班,我在课堂教学进行“导师式”课堂教学模式的实践,把实践的感受撰写的论文获得长沙市论文评比一等奖。今年的毕业班,我尝试“三段式目标自主学习法”(自己瞎捏的名词)。课堂主要环节包括:接触课题,展开目标-----自主学习,到达目标-----反馈内化,延伸目标。总的思路是放手让每一个学生大胆亲近数学,根据自己的能力提出对数学的看法进行积极的学习,宗旨是全面提升学生对数学的态度和学习方法,从而提高课堂的效率。

  一、直接导入,展示目标。

  1.出示课题:倒数的认识。

  看到这个课题你能知道我们这节课的学习任务是什么?(借用三个英语单词做引路词:What? Why ? How?)。

  2.是否有哪些经验可以回答一点?(调查学生已有的知识经验和生活经验)

  二、研究学习,到达目标。边学边练

  1.自学教材5分钟,尝试做一下书本的练习题。教师巡视。

  把自己的收获,和你认为最有价值的句子写到黑板上。可以是书本上的,也可以是自己想的。写在课题下面。(鼓励学生板书,培养抽象知识的能力。)

  2.概括“倒数”的意义。

  下定义:乘积是1的两个数互为倒数。

  尝试表达:这些算式里哪两个数互为倒数?P24的几个例子,把机会留给学困生表达。

  3.怎样求一个数的倒数?

  你能找出与这些数互为倒数的数吗?

  4.穿插一个游戏,互说倒数,先叫一个学生上讲台与老师示范再同桌展开活动。

  小结方法:谁发现了求一个数的倒数的方法?

  特例:0没有倒数?

  5.作业指导。求一个数的倒数的过程。

  求3/5的倒数,下面是小红和小明的作业本,你赞成谁的书写?

  小红:3/5=5/3

  小明:3/5的倒数是5/3。

  6.当堂作业:P24的做一做。P25的第4题。做在书上。

  三、拓展目标,巩固提高。

  1.判断:(对的在括号里打“√”,错的打“×”)

  2。开放性填空。(假定法)

  四、自主小结,延伸目标。

  谈谈自己的收获和学习体会。

  教后反思:

  1.教学流程顺利。学生的学习过程按照平时训练的自主学习方式推进,每个人根据自身基础寻求不同程度的进步和发展。每个人都在参与,都在思维。

  2.体现自己的教学观和学生观。课堂是学生的课堂,备课固然要考虑教材的处理,但更重要的是要考虑学生的感受,考虑学生的学习心理。我设计的教学过程主要围绕学生学习活动推进,让学生自主学习。长期坚持,学生的自学能力能得到很好的培养。

  3.五分钟的遗憾。看手表还有五分钟时间,不想铃声却响了。还有一个提高拓展的环节没有完整,给听课者和自己一个残缺感,是个遗憾。没关系,教研是个话题,能通过一节课展示自己的想法和做法,供大家批评、商讨,也是一件好事。

倒数教学设计13

  教学内容:

  北师大版小学数学五年级下册第24页

  教学目标:

  1、在计算、比较、观察中,发现倒数的特征并理解倒数的意义。

  2、掌握求一数的例数的方法。

  3、培养学生的学习兴趣和良好的学习习惯。

  教学重点、难点:

  重点:发现倒数的特征,理解倒数的意义

  难点:求一个数的倒数的方法

  教学过程:

  一、 比赛引入

  师:同学们,前面我们学习了分数的乘法,今天老师给出一些乘法算式,比一比谁能最先发现这组算式的秘密。

  (拿出课堂作业本帮助你)

  2/3×3/2 2×1/2

  8/11×11/8 1/10×10

  7/9×9/7 7×1/7

  (师巡视学生的情况,并对分数的格式加以指导)

  学生思考后,汇报结果:

  生1:两个乘数的分子、分母位置颠倒

  生2:每个算式乘积是1

  师:现在老师有点疑问,2不是分数,它的分子和分母是什么呢?

  生:2可以写成2/1,分子分母颠倒后,2/1×1/2=1

  二、 理解倒数的意义

  师:观察的真仔细,我们能不能给这样的数取个名字呀?

  生:倒数

  师:对,这就是我们今天要研究的课题:倒数(板书)

  师:再看这几个算式,2×1/2=1,我们说:2是1/2的倒数,1/2是2的倒数

  师:看这几个算式,倒数是对几个数来说的?

  生:两个数(师板书)

  师:这两个数的乘积有什么特点?

  生:乘积是1(师板书)

  师:再举一个例子:2/3×3/2=1,我们说:2/3是3/2的倒数,3/2是2/3的倒数,2/3和3/2互为倒数(师板书:互为倒数)

  师:怎么理解“互为”呢?

  生:相互的意思

  生:就是对两个数而言的

  师:“互为”是对两个数而说的,不能孤立地说谁是倒数,应该说谁是谁的倒数。

  师:你能说说黑板上其他例子谁和谁互为倒数吗?和你的同桌说一说

  师:除了这几个例子,能写出其他乘积是1的算式吗?

  师:大家表现真好,老师也来说一个,3/5是倒数,对吗?

  生:不对

  师:你帮老师改正吧

  生1:应该说3/5是5/3的倒数

  三、 研究求一个数的倒数的方法

  师:我们已经了解了倒数,现在我们就帮这些数找一下他们的倒数朋友吧! (师读生写)

  3/2 7/9 15 1 0

  把他们的倒数朋友写在作业本上。(师巡视,找两名学生板演)

  师:这么快,你们是怎样找到这些数的倒数的?

  生:分子分母交换位置(师板书找倒数的方法)

  师:15是整数,怎么办?

  生:15=15/1,分子分母交换位置,就是1/15

  师:1呢?

  生:1=1/1,所以1的倒数还是1(师板书)

  师:0有倒数吗?(出现2种答案,小组讨论,师巡视)

  师:讨论完了,那0到底有没有倒数呢?

  生:没有

  师:理由呢?

  生:0不能做分母,0乘任何数都得0(师板书)

  师:找一个数(0除外)的倒数的方法,就是分子和分母交换位置(板书)

  四、 总结收获、巩固练习

  师:大家会找倒数,现在请你做主考官,你说一个数,找一个同学说它的倒数

  师:大家掌握这么好,总结一下学的知识吧。

  师:想不想再挑战一下

  生:没问题

  师:好,那就带着这份自信认真完成,做完小学数学作业本第11页

  五、 拓展、提高(由于练习时间长,这个环节课后做了补充)

  师:老师这有2个疑问,能不能帮助老师呀?帮老师求他们的倒数,老师出示小数和带分数

  课后反思:

  本节课是北师大版五年级下册第三单元的内容《倒数》,对倒数的认识,学生印象深的是“分子与分母颠倒了位置”而不是倒数的本质内涵“两数乘积为1”。所以在课堂学习时,我从分数的倒数引入,学生体会到分数的倒数外在表现形式确实是将分子与分母交换了位置,然后提问乘积有什么特点?让学生理解若互为倒数的两个数,乘积是1。

  对“互为”一词的理解,我没有花很多的时间,因为学生在学习“倍数”概念时,已经接触“互为并不是指一个数,而是两数之间的关系”这种情况,当时花了很多的时间练习谁和谁互为倒数,目的是让学生体会,进而理解。

  然后提问:整数没有分子和分母,那么整数是否有倒数呢?如果有的话,你能举例说明吗?在学生掌握总结出求整数的倒数的方法后,再提出两个特殊的整数的倒数的研究,通过集体讨论,加深了学生对“1”和“0”倒数的认识。同时也将倒数的认识引向本质内涵:两数乘积为1。

  在本节课也有一些不足:让学生讨论过多,求倒数的方法,我只是口述,应该板书,效果会更好;还有就是时间没有掌握好,本打算练习后讲小数、带分数的倒数的求法,但由于时间没有分配好,最后没有提及,课后才进行补充。

倒数教学设计14

  教学内容:

  p27倒数的认识,练习六全部习题。

  教材简析:

  这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。

  教学要求:

  使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。

  教学过程:

  一、用汉字作比喻引入

  1、师指出:我国汉字结构优美,有上下、左右结构,如果把杏字上下一颠倒成了什么字?呆把吴字一颠倒呢?(吞)一个数也可以倒过来变为另一个数,比如3/4倒过来呢?(4/3)1/7倒过来呢?(7/1也就是7)这叫做倒数,随即板书课题。

  2、提一个开放性的问题:看到这个课题,你们想到了什么?

  (学生各抒己见)

  师生共同确定本节课的目标研究倒数的意义、方法和用处。

  二、新知探索:

  1、研究倒数的意义

  师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。

  学生自学后,问:有没有疑问?

  师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  2、学生自主举例,推敲方法:

  (1)师:下面,请大家各自举例加以说明。

  (2)学生先独立思考,再交流。

  (a、以真分数为例;如:5/8的倒数是8/5真分数的倒数是假分数。)

  (b、以假分数为例;8/5的倒数是5/8假分数的倒数是真分数。)

  (c、以带分数为例;带分数的倒数是真分数。)

  (d、以小数为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)

  (e、以整数为例;整数相当于分母是1的假分数)

  学生举例的过程同时将如何寻找倒数的方法也融入其中。

  3、讨论0、1的情况:

  1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)

  4、总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)

  三、反馈巩固:

  1、完成练一练。

  学生独立完成后,集体订正。重点问:8的倒数是几?

  2、练习六5(判断)

  3、补充判断:

  a、a是自然数,a的倒数是1/a。

倒数教学设计15

  教学内容:

  北师大版小学数学五年级下册24页“倒数”。

  教材分析:

  “倒数”是在分数乘法计算的基础上进行教学的,是进一步学习分数除法的一个重要概念。教材首先让学生观察乘积是1的算式,从而引出倒数的意义,根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

  教学目标:

  ⒈使学生经过探索理解倒数的意义,掌握求倒数的方法,并能正确熟练地求一个数的倒数。

  ⒉在探索知识的过程中培养学生观察、比较、抽象、归纳的能力。

  ⒊培养学生独立探索的精神和合作交流的意识,并渗透“事物之间相互联系,相互依存”的辩证思想。

  教学重点:

  理解倒数的意义和会求一个数的倒数。

  教学难点:

  理解“互为”;求带分数、小数的倒数。

  教具准备:

  小黑板或课件。

  教学方法:

  倒数的学习适合学生展开观察、比较、交流、归纳等数学活动,在教学过程中,我坚持以学生为主体,引导学生从发现乘法算式的特点到从特点出发认识倒数的意义,再从倒数的意义到探究求一个数的倒数的方法,这一过程符合学生由具体到抽象的认知规律。

  学习方法:

  本节课,我采用自主探究与小组合作的形式组织教学。这样,一方面可以让学生尝试发现,体验到创造的过程;另一方面,也可以增强学生的合作意识,相互学习、相互借鉴,逐步完成对倒数的认识。

  教学过程:

  一、课前谈话

  师:今天老师很高兴和大家一起上课,所以老师想和大家互相成为好朋友。大家愿意吗?

  生:愿意。

  师:那你们是怎样理解“互相”成为好朋友的?

  生:老师是我们的好朋友,我们是老师的好朋友。

  二、游戏导入

  师:朋友在一起最喜欢做游戏,现在我们就一起来做游戏,好吗?(好)请同学们结合语文的学习猜几个字,如果把“杏”上下颠倒,变成什么字了?(呆)把“吴”字颠倒呢?(吞)

  师:数学王国里的一些数也有这样的特性。如:倒过来是。倒过来是5。你们能根据这些数的特性给他们起个名字吗?

  生:倒数。

  师:今天我们就一起来研究倒数。(板书:倒数)

  三、探索倒数的意义

  ⒈师:看到“倒数”这个新名词,你们想到了哪些问题?(根据学生的回答,教师整理后出示)

  ⑴什么是倒数?⑵倒数是指一个数吗?⑶怎样求一个数的倒数?⑷是不是所有的数都有倒数?

  ⒉师:下面,我们就带着这些问题来学习。先来看两组口算题。

  小黑板(或课件)出示:

  =2=

  =10=

  =7=

  =5=

  师:观察这些算式你有什么发现?

  生1:每个算式的积都是1。

  生2:两个乘数的分子、分母互相颠倒。

  师:那么,你们能根据自己的理解说说什么是倒数吗?(师指名回答)

  师:像这样乘积是1的两个数互为倒数。如:2=1,我们就说2的倒数是,的倒数是2,2和互为倒数。

  师:为什么乘积是1的两个数不直接说是倒数,而要说成互为倒数呢?互为是什么意思呢?

  生1:互为是互相的意思。

  生2:互为说明这两个数的关系是相互依存的。

  师:同学们说的很好,倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。比如=1,不能说是倒数或是倒数。

  师:像这样互为倒数的两个数你能再说出几组吗?(指名回答)

  小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。

  四、探索求一个数倒数的方法

  ⒈师:你会求一个数的倒数吗?会求什么数的倒数呢?怎么求的?能举例说明吗?

  生1:我会求分数的倒数。如把分子、分母互相颠倒就是,所以的倒数是。

  生2:我会求整数的倒数。如5=,分子分母互相颠倒就是,所以5的倒数是。

  ⒉讨论求“1”和“0”的倒数。

  师:小组讨论“1”和“0”的倒数是多少?

  小组汇报。

  生1:1的倒数是1,1可以写成,倒过来还是1。

  生2:11=1,所以1的倒数是1。

  生3:0没有倒数,因为0和任何数相乘都不等于1,所以0没有倒数。

  生4:0虽然可以写成,但是倒过来是,因为分母不能为0,所以0没有倒数。

  ⒊反馈练习

  ①完成24页试一试。(学生练习前,教师强调一下书写格式)

  ②完成24页练一练。

  五、拓展延伸

  ⒈师:你们会求带分数的倒数吗?如的倒数是多少?

  生:会。=,分子分母互相颠倒就是,所以的倒数是。

  ⒉讨论如何求小数的倒数。

  出示:求0.2的倒数。

【倒数教学设计】相关文章:

倒数的认识教学反思10-03

《倒数的认识》教学反思09-23

六年级《倒数的认识》教学设计10-22

六年级上册倒数的认识教学设计12-17

六年级上册倒数的认识优质课教学设计12-08

《倒数的认识》说课稿11-09

教学设计模板-教学设计模板07-16

六年级数学《倒数的认识》教学反思09-22

教学设计与教学反思04-27