除数是一位数的除法的教学设计

时间:2021-07-12 16:31:40 教学设计 我要投稿

除数是一位数的除法的教学设计

  作为一位优秀的人民教师,通常会被要求编写教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。如何把教学设计做到重点突出呢?下面是小编整理的除数是一位数的除法的教学设计,仅供参考,欢迎大家阅读。

除数是一位数的除法的教学设计

除数是一位数的除法的教学设计1

  1、口算除法

  (分成了两个课时上完)

  教学内容:13—15页图示和例1

  教学目标:

  1、在实践操作活动中理解掌握一位数除法(被除数各个数位上的数都能被除数整除的)口算方法。

  2、能正确、熟练地口算简单的除数是一位数的除法。

  3、在与他人交流思维的过程中学会倾听与反思。

  教学重点、难点:通过分木棍的实践操作活动,让同学理解、掌握几十几除以以位数的口算方法。

  教学过程:

  一、教学例1

  1、出示60个小木棍。

  观察:这里有几个小木棍?(同学数,并口答。)

  2、假如要把这些小木块平均分成3份,你打算怎样分?怎样列式?每份有多少?(同学实践操作,得出结论。)

  3、分好后在小组里交流一下自身分的方法合解雇。

  4、假如不分小木块棍,我们又怎样口算60÷3能?

  结合同学汇报,教师板书:

  这样算6÷3=2

  60÷3=20

  6、试一试、(同学独立完成)

  80÷460÷2

  (1)口算写出结果。

  (2)说说口算方法。

  二、教学例1第二个问题

  1、出示第二个(2)问题

  600÷3你能口算得出结果吗?

  先独立考虑,然后在组内交流一下口算的方法。

  2、结合同学汇报,出图验证并板书:

  这样算6÷3=2600÷3=200

  3、试一试。

  360÷6640÷8

  二、教学例1第三个问题

  1、出示第三个问题

  240÷3你能口算得出结果吗?

  先独立考虑,然后在组内交流一下口算的方法。

  2、结合同学汇报,出图验证并板书:

  这样算24÷3=8240÷3=80

  一、巩固练习

  1、口算下列各题,并说说口算的方法。

  40÷5640÷8

  2、课堂小结

  在这堂课上你学会了什么?你有什么收获?

  五、作业:17页1、2

除数是一位数的除法的教学设计2

  一、教学任务分析:

  “口算除法(除数是一位数,商是整十、整百、整千的数)”是义务教育课程标准实验教材第六册第二单元第一课时内容,这课在教材编排上分三个层次:第一,以生活的活动情境(运输蔬菜图)提供条件,从而引出口算除法的算式。第二,根据除法算式,学生根据不同的想法说出不同的算理。第三,做一做(1、2两题)。

  在对本课教材进行分析时,基于我对教材的理解与不同地区学生的差异性,对教材进行了如下的处理:

  1、由于主题图是运输蔬菜图的生活情境,与乡镇学生的生活相差太远,我将主题图删掉,借助“明矾节”与学生进行对话,提供信息让学生提出问题。

  2、此课之前,学生已有表内除法口诀与一位数乘整十、整百、整千的乘法口算作为基础,学生对除数是一位数,商是整十、整百、整千的除法口算应该不是很难,重要的是学生说出它的算理,并运用这算理进行快速的口算。

  二、设计理念:

  如何让枯燥的口算内容变得丰富,让乏味的算理变得有情趣,使学生间接接受转化为直接参与,从而在思维能力、情感态度与价值等方面得到进步和发展呢?我设计此课时,将重点放在引题、算理的推导与练习的设计上。引题引用本地区的“明矾节”与学生进行聊天,取学生熟悉的素材进行导课,然后与学生一起探讨除数是一位数的除法口算算理,最后设计了几道练习,主要是培养学生分类思想、发散思维与逻辑推理能力。

  三、教学目标:

  1、让学生在具体情境中体会口算除法的含义,让学生说出多种算理,选择自己喜欢的方式进行计算。

  2、培养学生初步的观察、分类的能力。

  3、使学生感受数学与生活的联系,能够运用所学知识解决日常生活中的简单问题。

  四、预设教学过程:

  (一)创设情境,分析算理

  1、聊天

  师:每年的九月初六是我们的“明矾节”,在这节日里你都看到了什么?那时的心情如何?

  师:今年的“明矾节”我也来到了我们这里,在这几天里,在集市中我听到一些人的话,我把它写了下来。出示:

  a、顾客:我买了2套同样的衣服共用了60元。

  b、(服装)商贩:我这3天一共赚了600元。

  c、(花瓶)商贩:我这3天一共赚了270元。

  师:根据这几句话,你能提哪些有关除法的数学问题?

  根据学生回答进行板书。

  2、分析算理

  师:这60÷2你能计算吗?试试看

  (抽一学生)师:你是怎么计算的?还有没有不同的算法?

  师根据学生的回答进行算理板书。

  放手让学生分析600÷3与270÷3的算理。

  3、试一试

  出示一组算式,让学生口算。

  师:老师现在想考考你们,有信心吗?

  练习完后,师:观察这些算式有没有共同的特点?(除数都是一位数,商是整十、整百、整千的数)

  4、板书:除法是一位数的除法

  (二)实际运用,扩展知识

  挑战数学小博士

  1、()÷9=()

  提出不同的要求。

  2、2400÷()=

  师:()里只能填一位数,思考都能填哪些数?为什么?

  3、AA00÷A=

  师:A代表一个数字,谁知道这道算式等于什么?为什么?A可以取哪些数字?

  4、3000÷□=□00

  师:□里填一个数字,它可以填哪些?

  (四)全课总结,畅谈体会

  这节课你有什么收获?

除数是一位数的除法的教学设计3

  教学内容:

  人教版《义务教育课程标准实验教科书数学》三年级下册

  教学目标与策略选择:

  在人教版教材中,本课是学生第二次学习除法知识。学生已经学习过表内除法(包括有余数和没有余数),理解了除法的意义。依据教材意图,本课要在原有基础上实现从“表内除法”到“被除数是两位数,除数是一位数,商是两位数(被除数十位没有余数或有余数)”的突破,以便学生加深对除法意义的认识,理解算理,掌握算法。为此,确定以下教学目标:

  1、经历两位数除以一位数的笔算过程,理解算理,掌握算法。

  2、在学习过程中,学会沟通知识间的联系。

  3、在探究新知的过程中,培养学生自主学习、分析、比较、概括的能力。

  本课在教学中力图重点体现让学生经历从“表内除法商是一位数”到“商是两位数”的突破过程,突出问题解决的过程,理解算理,掌握算法,完善学生的认知结构。

  鉴于以上的目标定位,本课设计时基于“利用学生已有的知识水平,在解决问题的过程中不断地遇到新问题,解决新问题”的总体思路。为此,主要采取以下教学策略:

  1、找准学生的起点,从学生已有的知识水平出发。

  2、借助直观理解难点。

  3、讲授学习和自主学习相结合,采用多种学习方式。

  教学片段实录:

  一、引入

  1、师生谈话

  2、课件出示小朋友捐书的情境。

  3、教师抛出问题:

  师:根据上面的'数学信息能提出数学问题吗?

  生:平均每人捐几本?

  二、展开

  (一)商的定位

  1、独立解决问题

  师:平均每人捐几本?这个问题怎么解决呢?请大家动笔算算。

  学生独立解决。

  2、反馈:

  生1:42÷2=21(本)

  师:为什么用除法算呢?

  生:把42本书平均分成2份,所以用除法算。

  师:得数21是怎样算出来的呢?

  生:40÷2=20,2÷2=1,20+1=21

  师:你是想口算的。

  生2:21

  2╯42

  42

  师:你用竖式算,是怎样想的?

  生2:40÷2=20,2÷2=1,20+1=21

  师:你也想口算方法。不过,除法竖式一般不这样写。我们一起来写一写。

  3、师生一起写竖式,理解算理,掌握算法。

  师:42÷2,笔算时从十位算起,该先算什么呢?

  生:十位4÷2

  师:十位4÷2,商几,写在什么位上?为什么?

  生:商2,2写在十位上,因为40÷2=20,20就是2个十。

  师:商写好后做什么呢?

  生:商2乘除数2,二二得四,4写在十位4的下面,4-4=0,0不用写。

  师:十位4÷2=2,就是口算中的哪一步?

  生:40÷2=20

  师:竖式中的4-4=0,其实就是几减几呢?

  生:42-40=2

  师:我们简单的说,就是4-4=0,0不写,个位2搬下来。

  接下去该怎样算呢?

  生:个位2÷2,商1,1写在个位上。一二得二,2-2=0。

  师:这又是口算中的哪一步呢?

  生:2÷2=0

  4、能完整的说说刚才是怎样算得吗?(先独立说,再同桌相互说。)

  5、指名说怎么算得?(生说略)

  师:他说得怎样,谁来评一评?

  生:他说的不完整,相乘漏了。

  师:你听的很认真。

  6、师:看了竖式,还有问题提吗?

  生问:商2为什么写在十位上?

  生答:4个十÷2=2个十,2写在十位上

  生问:商1为什么写在个位上?

  生答:2个一÷2=1个一,1写在个位上。

  生问:十位4下面的4表示几?0为什么不写?个位2为什么要搬下来?

  生答:4就是40,42-40=2,所以0不写,个位2搬下来。

  7、练一练62÷2竖式计算

  8、小结:

  师:42÷2、62÷2在竖式计算时,都是先算十位,再算个位。

  (二)十位有余数

  1、出示52÷2。

  师:62÷2,改成52÷2,你会用竖式计算吗?

  也先自己试一试,如果有困难,可以和同桌商量,也可以看看书,还可以找老师帮助。

  2、学生独立写竖式

  3、反馈

  方法1:26

  2╯52

  4

  12

  12

  方法2:21

  2╯52

  4

  2

  2

  师:你认为哪种写法是正确的?

  生:方法1是正确的。

  师:谁写的?向大家介绍一下,你是怎样写的?

  生:十位5÷2,商2,2写在十位上,2×2=4,4写在十位5的下面,5-4=1,个位2搬下来,12÷2,商6,6写在个位上,2×6=12,12写在12的下面,12-12=0。

  师:有谁再来试试?

  师:从大家的表情看得出,意思知道了,说有点困难,对吧?那我们一起来看看小棒图。

  4、借助小棒理解算理

  师:52÷2,先算什么?

  生:十位5÷2。

  师:就是把5捆小棒平均分成2份,每份几捆?2捆的2写在什么位上?为什么?

  生:每份2捆,2写在十位上,因为表示2个十。

  师:2×2=4,4表示哪里的小棒呢?

  生:分掉的4捆

  师:5-4=1,1表示什么呢?

  生:多出的1捆。

  师:5捆分掉4捆,还剩1捆,这1捆怎么办?

  生:1捆分成5和5,还有2根分成1和1。

  师:哦,你分了2次。还有不同的分法吗?

  生:把1捆拆开就是10根,再和散的2根合起来是12根。

  师:竖式中有十位1,怎么变成12?

  生:个位2搬下来。

  师:接下来怎么做?

  生:用12÷2,商6,6写在个位上,6表示6个一。

  5、师:52÷2,现在能完整的说说怎样算得吗?(先独立说,再同桌互说)

  6、改正

  师:错了的小朋友现在能改正了吗?自己动笔改一改。

  7、比较

  师:52÷2,在竖式计算时,与42÷2、62÷2,有什么相同和不同的地方呢?

  生:42÷2、62÷2,十位没有了,52÷2,十位还余1。

  师:十位还余1怎么办?

  生:和个位合起来再除。

  三、练习

  1、用竖式算一算

  48÷4、91÷7、96÷6、95÷5

  (1)独立完成、

  (2)反馈讲评错例

  2、解决问题

  (1)湖州地区有56位老师要去买一些宁波特产,4人乘一辆出租车,算一算要几辆车?

  (2)听课老师这么多,如果有456位老师要去呢?

  师:先估一估

  生:大概100辆,400÷4=100

  生:110辆,440÷4=110,56÷4=14

  师:用竖式算一算(生算)(反馈略)

  师:算后想说什么?

  生:方法差不多,就是数变大了。

  四、总结

  交流今天你最大的收获,也可以相互评价。(略)

  课后反思:

  大多老师不喜欢上计算课,有的认为计算课枯燥,课堂气氛不活跃;有的认为只需几分钟时间,新课就结束了,没上头。要上好一节计算课确实不容易。在本节课中,有许多新的知识点,商的定位、两次试商、十位上没有余数和有余数的不同解决办法、竖式的书写等,学生对算法的掌握、十位有余数算理的理解有困难,教学时从学生的已有知识水平出发,采用了讲授和自主学习相结合的方法。课后有以下体会:

  1、利用口算经验学习笔算。

  在教学本节课前,进行个别调查,除数是一位数的除法的口算方法熟练,笔算大多数学生不会,会写的也写错。课堂中解决“平均每人捐几本?”时,出现的情况与课前调查的一致。于是利用学生熟练的口算经验学习笔算,将口算方法、笔算的算理理解与算法的掌握紧密结合,降低新知学习的难度。。

  2、直观用在刀口处。

  42÷2,52÷2,同样是两位数除以一位数,为什么后者要借助小棒图理解算理呢?42÷2,十位没有余数,借助口算经验,对算理的理解、算法的掌握不会有困难。而52÷2,,对于要把“十位余下来的1”与“个位上的2”合起来再除理解有困难时,演示课件,让学生借助更形象、更直观的手段帮助理解。

  3、注重有序思考的方法。

  观察平时的计算教学发现:有些学生机械模仿,有些学生会做不会说,言行不一致。除数是一位数的除法,在本节课中学生虽然看不出笔算的必要性,但它是后继知识学习的基础,学生有必要理解算理,方法掌握。所以在教学中,注重让学生用简洁的语言表达,说说先做什么,再做什么,展示思考过程。

  4、做、说、评、改相结合。

  计算课的教学,学生也应该“知其所以然。”课堂上,提供足够的时间和空间,让每位学生动笔试一试,采用多种形式说一说,对做法说法相互评一评,再把错误改一改,学生学得实在些,相关能力也得到培养。

  5、困惑

  在本节课中,对42÷2,52÷2笔算方法进行了比较,这算不算对计算过程的提炼和提升?如果不是,又该怎样做呢?

【除数是一位数的除法的教学设计】相关文章:

1.《除数是一位数的除法》的教学设计

2.除数是两位数的除法教学设计

3.《太阳是大家的》教学设计

4.《黄河是怎样变化的》教学设计

5.《鸟是树的花朵》教学设计

6.我要的是葫芦教学设计

7.《我要的是葫芦》教学设计

8.黄河是怎样变化的教学设计

9.《是乐谱错了》教学设计