有理数的加法教案

时间:2024-07-31 13:21:53 教案 我要投稿
  • 相关推荐

有理数的加法教案

  作为一位不辞辛劳的人民教师,时常会需要准备好教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。我们该怎么去写教案呢?以下是小编为大家收集的有理数的加法教案,希望对大家有所帮助。

有理数的加法教案

有理数的加法教案1

  教学目标

  知识与技能:

  掌握有理数加法法则,并能运用法则进行有理数加法的运算。

  过程与方法:

  1.经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的认知规律;

  2.动手、发现、分类、比较等方法的学习,培养归纳能力。

  情感态度与价值观:

  1.通过师生合作交流,学生主动参与探索获得数学知识,从而提高学习数学的积极性;

  2.体会数学来源于生活,服务于生活,培养热爱数学的情感,体会数学的应用价值;

  3.培养善于观察、勤于思考的学习习惯,树立合作意识,体验成功,提高学习自信心。

  教学重点

  有理数加法法则及运用

  教学难点

  异号两数相加法则

  教具准备

  powerpoint课件

  课时安排

  1课时

  教学过程环节教师活动学生活动设计意图创设情境引入新课XX年6月11日至7月11日,第19届世界杯足球赛在南非举行。来自世界各国的32支球队为全世界的球迷送上了一场完美的.足球盛宴。

  小组循环赛中,胜一场得3分,平一场得1分,负一场得0分,积分最多的两支队伍进入十六强。积分相同时,净胜球多者为胜。

  以B组为例,进入十六强的是阿根廷和韩国。

  国家赛胜平负得分阿根廷韩国希腊尼日利亚再以A组为例,A组积分榜,国家赛胜平负得分进球失球净胜球乌拉圭+40墨西哥+3-2南非+3-5法国+1-4师:从A组积分榜可以看出墨西哥和南非的积分相同,那么究竟应该确定哪个队进入十六强呢?此时则需要计算各队的净胜球数。你能列出计算各队净胜球数的算式吗?

  学生看图表,思考问题。

  学生列出计算净胜球数的算式。利用世界杯的例子,体现数学来源于生活,让学生体会学习有理数加法的必要性,更能激发学生的兴趣,体会学习有理数运算的必要性。环节教师活动学生活动设计意图探索新知

  师:净胜球数的计算实际上涉及到有理数的加法。今天我们就来研究有理数的加法运算。

有理数的加法教案2

  教学目标:

  1. 知识与技能:使学生理解加减法统一成加法的意义,能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,

  2. 过程与方法:经历加减法统一成加法的过程,体会加法的运算律在运算中的应用

  3. 情感、态度与价值观:渗透用转化的思想看问题以及解决问题,鼓励学生依据法则简化运算

  教学重点:能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,

  教学难点:准确、熟练地进行加减混合运算

  教学过程

  一、课前预习

  1、有理数的加法法则是什么? 2、有理数的减法法则是什么? 3、有理数的加法有什么运算律?具体内容是什么? 4、计算下列各题 (1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12

  二、自主探索

  根据有理数减法法则,有理数的加减混合运算可以统一为加法运算

  例1、计算 (1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ ) 解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)---------------------------统一为加法 = 26+(-42)---------------------------------------运用运算律 =-16 (2) (3)(4) (5)

  算式(-6)-(-13)+(-5)-(+3)+(+6)是有理数的加减混合运算,我们还可以按下列步骤进行计算: 解:(-6)-(-13)+(-5)-(+3)+(+6)

  =(-6)+(+13)+(-5)+(-3)+(+6)------------统一加号 =-6+13-5-3+6----------------------------------------省略加号 =-6-5-3+13+6-----------------------------------------运用运算律=-14+19=5 说明: 省略加号的形式-6+13-5-3+6 表示-6,+13,-5 ,-3,+6这五个数的.和。

  例2.计算:

  (1) -3-5+4 (2)-26+43-24+13-46

  解:(1) (2)

  例4、若a=-2,b=3,c=-4,求值

  (1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c

  解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 ---------- [ 数据代入时,注意括号的运用]

  (2) (3)(4)

  例5、在伊拉克的战争中,谋生化小组沿东西方向路进行检查, 约定向东为正,某天从A地到B地结束时行走记录为(单位:km)

  +15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5 问:(1)B地在A地何方,相距多少千米?

  (2)这小组这一天共走了多少千米

  三、学习小结

  这节课你学会了哪几种运算?

  四、随堂练习

  A类

  1、计算: (1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3)

  (3)(+ )-(- )+(- )-(+ ) (4) -7.52+ -1.48

  (5)21-12+33+12-67 (6)-3.2+5.8-8.6+12

  2 计算

  (1) 1+2-3-4+5+6-7-8++97+98-99-100

  (2) 66-12+11.3-7.4+8.1-2.5

  (6)-2.7-[3-(-0.6+1.3)]

  B类

  3. 计算 (1) + + ++ (2) + + ++

有理数的加法教案3

  教学目标

  1、理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

  2、通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。

  3、通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

  教学建议

  (一)重点、难点分析

  本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值。理解有理数的减法法则是难点,突破的关键是转化,变减为加。学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施。

  (二)知识结构

  (三)教法建议

  1、教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。

  2、不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。

  3、因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的.运算律,这样有利于知识的巩固和记忆。

  4、注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

  教学设计示例:

  有理数的减法

  一、素质教育目标

  (一)知识教学点

  1、掌握有理数的减法法则。

  2、进行有理数的减法运算。

  (二)能力训练点

  1、通过把减法运算转化为加法运算,向学生渗透转化思想。

  2、通过有理数减法法则的推导,发展学生的逻辑思维能力。

  3、通过有理数的减法运算,培养学生的运算能力。

  (三)德育渗透点

  通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

  (四)美育渗透点

  在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美。

  二、学法引导

  1、教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。

  2、学生学法:探索新知→归纳结论→练习巩固。

  三、重点、难点、疑点及解决办法

  1、重点:有理数减法法则和运算。

  2、难点:有理数减法法则的推导。

  四、课时安排

  1课时

  五、教具学具准备

  电脑、投影仪、自制胶片。

  六、师生互动活动设计

  教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。

  七、教学步骤

  (一)创设情境,引入新课

  1、计算(口答)(1);(2)-3+(-7);

  (3)-10+(+3);(4)+10+(-3)。

  2、由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃。这一天的最高气温比最低气温高多少?

  教师引导学生观察:

  生:10℃比-5℃高15℃。

  师:能不能列出算式计算呢?

  生:10-(-5)。

  师:如何计算呢?

  教师总结:这就是我们今天要学的内容。(引入新课,板书课题)

  【教法说明】

  1、题目既复习巩固有理数加法法则,同时为进行有理数减法运算打基础。2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法。

  (二)探索新知,讲授新课

  师:大家知道10-3=7。谁能把10-3=7这个式子中的性质符号补出来呢?

  生:(+10)-(+3)=+7。

  师:计算:(+10)+(-3)得多少呢?

  生:(+10)+(-3)=+7。

  师:让学生观察两式结果,由此得到:

  师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以。

  师:是如何转化的呢?

  生:减去一个正数(+3),等于加上它的相反数(-3)。

  【教法说明】

  教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算。

  2、再看一题,计算(-10)-(-3)。

  教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

  生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7。教师给另外一个问题:计算(-10)+(+3)。

  生:(-10)+(+3)=-7。

  教师引导、学生观察上述两题结果,由此得到:

  教师进一步引导学生观察(2)式;你能得到什么结论呢?

  生:减去一个负数(-3)等于加上它的相反数(+3)。

  教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算。

有理数的加法教案4

  1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;

  2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;

  3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;

  4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;

  5.本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。

  重点、难点分析

  重点:是依据有理数的加法法则熟练进行有理数的加法运算。

  难点:是有理数的加法法则的理解。

  (1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。

  (2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。

  (3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。

  知识结构

  教法建议

  1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。

  2.有理数的加法法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。

  3.应强调加法交换律a+b=b+a中字母a、b的`任意性。

  4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。

  5.可以给出一些类似两数之和必大于任何一个加数的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。

  6.在探讨导出有理数的加法法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。

有理数的加法教案5

  (一)知识与技能目标

  1、经历探索有理数加法法则的过程,理解有理数的加法法则。

  2、运用有理数加法法则熟练进行整数加法运算。

  (二)过程与方法目标

  1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。

  2、在探索过程中感受数形结合和分类讨论的数学思想。

  3、渗透由特殊到一般的唯物辩证法思想

  (三)情感态度与价值观目标

  (1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。

  (2)让学生体会到数学知识于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。

  (3)培养学生合作意识,体验成功,树立学习自信心。

  二、教学重点、难点:

  重点:

  理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则 三、教学组织与教材处理:

  在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价、教师评价与小组评价相结合);行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。信:在本节课的探究法则与运用法则中体验成功,增添学习兴趣,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的'形式判断一句话的正误等等)。同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。另外利用多媒体来辅助教学,使教学内容直观形象化,使学生在比较真实的环境里面体验数学的生活性。

  四、教学流程

  (一)引入新知---新师播放一段世界杯的音乐,让学生感受激情,再问“大家知道今年世界杯的冠军得主是谁?”学生回答后师给与评价,然后出示“净胜球”问题:凯旋足球队第一场比赛赢了1个球,第二场比赛输了1个球。该队这两场比赛的净胜球数是多少?学生回答后教师引导学生用数学式子表示:把赢1个球记为“+1”,输1个球记为“-1” ,净胜球数应是(+1)+(-1) =0。师再问:如果该队第一场比赛输1个球,第二场比赛赢1个球.那么该队这两场比赛的净胜球数为多少?师引导学生用(-1) + (+1) =0的式子说明。 (二)探究新知---行

  1、师:同学们今天我们借助这两个式子来探讨有理数的加法。为了更形象的说明问题,我们用 1个 表示 +1,用 1个 表示 -1,那么就表示0。

  2、师:首先我们一起来计算(+2)+(+3)。教师演示:先出现两个带正号的球,再出现三个带正号的球,用方框框住总共有五个带正号的球,也就是说(+2)+(+3)= +5。师问:聪明的同学们能告诉我(-2)+(-3)等于多少吗?教师先让学生思考再回答,教师演示过程,并给与积极评价。在前两例的基础上再启发学生思考:(-3)+2,3+(-2),(-4) + 4三种情形。(注:此三例关键是“正负抵消”,教师教学时引导学生观察并运用这个思想)。

  3、师:同学们,其实我们还可以用数轴来表示刚才这几道题的运算过程。出示数轴,并规定正负方向。师先举例说明:先向西移动2个单位,再向西移动3个单位,则一共向西移动了5个单位。所以:(-2)+(-3)=-5。师然后让学生用数轴的方法运算(-3)+2,3+(-2),(-4) + 4三个式子。(注:学生在表示(-3)+2的移动过程时对于+2可能不能正确表示。师应强调加法是“相继”活动的合并,教学时可让学生先想想再决定到底是从原点出发还是从-3这个点出发。对于非常正确的见解,师给与积极评价。)

  (三)发现新知---省

  1、教师引导学生观察刚才的五个例子:

  问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?师先让学生独立思考,再小组讨论。在学生发表见解时应肯定他们朴素的语言,同时教师引导学生先把他们分成三类:同号类、异号类、相反数类,再去观察他们加数与和的符号和绝对值特征。

  2、师生共同得出有理数加法法则

  同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并把较大的绝对值减去较小的绝对值;相反数相加,和为零。师问:一个数同0相加?师生得出仍得这个数。师引导学生记一记。

  (四)运用新知---信 1、范例讲解:

  例1 计算下列各题:

  ①180+(-10);

  ②(-10)+(-1);

  ③5+(-5);

  ④ 0+(-2).

  教师引导学生先观察符号特征,再教师示范写出过程。

  解:(1)180+(-10)(异号型 ) =+(180-10)(取绝对值较大的数的符号, =170 并用较大的绝对值减去较小的绝对值)

  ②(-10)+(-1) (同号型) =-(10+1) (取相同的符号,并把绝对值相加)对于③④ 小题,可以让学生口答。

  2、解后思:

  教师引导学生反思刚才做题时的基本思路。教师在学生回答的基础上提炼为三句话: ①确定类型、②确定符号、③确定绝对值。

  3、说一说

  (口答)确定下列各题中的符号,并说明理由:

  (1) (+5)+(+ 7); (2) (- 10) +(- 3) (3) (+ 6)+(-5)

  (4) (+ 3)+(-8)

  注:此题意在强化对有理数加法的符号判断,特别是异号的情形着重反馈矫正 4、练一练

  1、计算下列各式:(1) (-25)+(-7); (2)(-13)+5;(3) (-23)+0; (4)45+(-45)。

  2、土星表面的夜间平均温度为-150度,白天比夜间高27度,那么白天的平均温度是多少?注:此两题意在对有理数加法法则的巩固和引导学生运用有理数的加法解决实际问题。第一题教师先让学生独立完成,并请四个学生演板。做完后小组之间开展互评,正误怎样?有什么值得改 进的地方?对于第二题教师请男女两个同学比赛进行演板,师给与评价。

  5、想一想

  请根据 式子(-4)+3,举出一个恰当的生活情境;(聪明的你能举出多少种新情境?)注:此例意在引导学生关注“生活中的数学”。对于学生有创意的情境师应给与积极评价。(符合此式子的情境有很多,如:温度变化问题、足球净胜球问题、方向行走问题、收入支出问题、水位涨落问题等等)

  (五)反省新知---谈一谈 我学到了什么?

  教师引导学生自我反省、自我评价。 师生共同总结:1、有理数的加法法则,2、运算时的基本思路。

  (六)挑战老师

  师说:通过今天的学习,老师认为:“ 两个有理数相加,和一定大于其中一个加数”。老师的说法正确吗?请聪明的你举例说明。

  (七)超越自我

  分别在右图的圆圈内填上彼此不相等的数,使得 条线上的数之和为零,你有几种填法?

  (八)布置作业。

  附:“新、行、省、信”

  ------------我的四字教育法

  一、“新”

  1、新的教学理念(“春风不让一木枯”);

  2、新的学习方式(“自主、合作、交流、探究”);

  3、新的评价体系(制定《成长档案袋》内设“单元知识总结”、“自己独特的解法”、“提出挑战性问题”、“探究性活动记录”、“自我评价与小组评价”,从而动态、全方位评价学生)。

  二、“行” 1、有品行(引导学生养成良好的数学学习习惯和培养良好的情感与价值观); 2、有行动(培养学生主动探究、参与合作和交流的意识)。

有理数的加法教案6

  一、教学目标

  1.知识与技能

  (1)使学生掌握有理数加法法则,并能运用法则进行计算;

  (2)在有理数加法法则的教学过程中,注意培养学生的运算能力。

  2.数学思考

  通过观察,比较,归纳得出有理数加法法则。

  3.情感与态度

  认识到通过师生合作交流,学生主动参与探索获得数学知识,从而提高学生学习数学的积极性。

  二、教学重点

  会用有理数加法法则进行运算。

  三、教学难点异号两数相加的法则。

  四、教学过程

  (一)、创设问题情境,探索新知

  小明沿着一条直线,先走两米,又走了三米,能否确定小明现在位于原来位置的哪个方向,与原来位置相距多少米?请把你们认为可能的所有答案说出来。

  把学生的分类抽象成数学问题,有以下几种思路。

  (二)、讲授新课

  1、大家开始画数轴,以原点为起点,规定向右的方向为正方向,想走的方向为负方向。

  (1)若两次都是向右走,很明显,一共向右走了5米。记作:(+2)+(+3)=+5

  (2)若两次都是向左走,很明显,一共向左走了5米。记作:(-2)+(-3)=-5(3)若第一次向右走2米,第二次向左走3米,在数轴上,我们可以看到,小明位于原来位置的左方1米处。记作:(+2)+(-3)=-1(4)若第一次向左走2米,第二次向右走3米,在数轴上,我们可以看到,小明位于原来位置的右方1米处。记作:(-2)+(+3)= +1

  2、从刚才画数轴的过程中,我们知道了加法实际上是相继活动的合并。我们可以借助数轴来得知两个有理数相加的结果。请模仿刚才演示的过程,向右表示加数中的正数,向左表示加数中的'负数,在数轴上表示两个数相加的过程,得到结果。(1)(-4)+(-1)(2)(+5)+(-3)(3)(-4)+(+7)(4)(-6)+3

  3、通过实践,我们发现,能借助数轴很方便地得知有理数加法结果。但对于如1700+(-1800),+(-)这样的数字在数轴上就不容易表示出来了,怎样才能迅速准确地计算出来呢?只有找出规律。师生讨论、归纳出有理数的加法法则:

  ①同号两数相加,取相同的符号,并把绝对值相加;

  ②绝对值不等的异号两数相加,取绝对值较大的加数的符号,并把较大的绝对值减去较小的绝对值;除此之外,有理数相加,还有其他情况

  (1)第一次向左走3米,第二次向右走3米,则小明仍位于出发点。记作:(-3)+(+3)=0

  (2)第一次向右走3米,第二次向左走3米,则小明仍位于出发点。记作:(+3)+(-3)=0

  (3)第一次向左(向右)走了3米,第二次在原地不动,则小明位于原来位置的左方(或右方)3米。记作:(+3)+0=+3或(-3)+0=0归纳为:

  ③互为相反数的两个数相加得0;

  ④一个数同0相加,仍得这个数。

  (三)、运用举例教科书例1,例2

  (四)、巩固训练

  (-5)+(-7)

  (-10)+6

  +12+(-4)

  +6+(-9)67+(-73)

  (-56)+37

  (-84)+20

  (-30)+(-20)(五)、课堂小结

  1、这节课你学到了什么?

  2、对于这节课你有什么困惑?

  (六)布置作业教科书练习1题,2题

  五、教学反思

  “有理数的加法”是人教版七年级数学上册第一章有理数的内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课时教材是通过球赛中净胜球的实例来明确有理数加法的意义,引入有理数加法的法则。不过我们学校学生都来自农村,学生基础比较差,根据实践,很多学生根本弄不清净胜球数是怎么回事,非但没有帮助其明确有理数加法的意义,还给部分学生造成了阻碍。因此在设计情境时放弃了净胜球数,而改用了学生较熟悉的情境,并且与数轴联系起来,切实帮助学生理解。有理数加法的教学,可以有多种不同的设计方案。如温度变化,盈利亏损等。过去处理这节内容是较快地由教师给出法则,用较多的时间组织学生练习,以求熟练地掌握法则。这种设计的教学重点偏重于让学生通过练习,熟悉法则的应用,近期效果较好。本设计则是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,所以学生掌握法则的熟练程度稍微差些,但我想磨刀不误砍柴工,如果注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识,学生不仅学懂了法则,而且能感知到研究数学问题的一些基本方法。而且在后续的教学中学生将千万次应用有理数加法法则进行计算,相信能够让学生熟悉掌握法则的。

有理数的加法教案7

  教学目标:

  知识与技能:

  1.进一步熟练掌握有理数加法的法则。

  2.掌握有理数加法的运算律,并能运用加法运算律简化运算。

  过程与方法:

  启发引导式教学,能够由特殊到一般、由一般到特殊,体会研究数学的一些基本方法。

  情感、态度与价值观:

  1.培养学生的分类与归纳能力。

  2.强化学生的数形结合思想。

  3.提高学生的自学以及理解能力,激发学生学习数学的兴趣。

  教学重点:

加法运算律的灵活运用,解决实际问题。

  教学难点:

能运用加法运算律简化运算,加法在实际中的应用。

  教学方法:

采取启发式教学法及情感教学,引导学生主动思考,主动探索。用大量的实例让学生得出规律。

  教学准备:

  1.复习有理数的加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加。

  (2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  (3)一个数同0相加,仍得这个数。

  2.口算:7+(-5) (-5)+(-4) (-10)+0 (-8)+8

  教学过程:

  (一)情境引入,提出问题:

  鼓励学生通过自己的探索,交流、归纳,自主得出有理数加法的运算律。

  1.叙述有理数的加法法则.

  2.小学学过的`加法的运算律是不是也可以扩充到有理数范围?

  3.计算下列各组数的值,并观察寻找规律。

  (1) (-7)+(-5) (-5)+(-7)

  (2) [8+(-5)]+(-4) 8+[(-5)+(-4)]

  (3) [(-7)+(-10)]+(-11); (-7)+[(-10)+(-11)]

  结论:在有理数运算中,加法交换律、结合律仍然成立。

  (二)活动探究,猜想结论:

  交换律——两个有理数相加,交换加数的位置,和不变.

  用代数式表示:a+b=b+a

  运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零.

  在同一个式子中,同一个字母表示同一个数.

  结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.

  用代数式表示:(a+b)+c=a+(b+c)

  这里a、b、c表示任意三个有理数.

  (三)验证结论:

  例1计算16+(-25)+24+(-32)

  (引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便)

  解:16+(-25)+24+(-32)

  =[16+24]+[(-25)+(-32)] (加法结合律)

  =40+(-57) (同号相加法则)

  =-17 (异号相加法则)

  例2计算:31+(-28)+28+69

  (引导学生发现,在本例中,把互为相反数的两个数相加得0,计算比较简便)

  解:31+(-28)+28+69

  =31+69+[(-28)+28]

  =100+0

  =100

  《2.4.1有理数的加法法则》同步练习

  3.若两个有理数的和为负数,那么这两个有理数(  )

  A.一定都是负数B.一正一负,且负数的绝对值大

  C.一个为零,另一个为负数D.至少有一个是负数

  4.两个有理数的和(  )

  A.一定大于其中的一个加数

  B.一定小于其中的一个加数

  C.和的大小由两个加数的符号而定

  D.和的大小由两个加数的符号与绝对值而定

  5.如果a,b是有理数,那么下列各式中成立的是(  )

  A.如果a<0,b<0,那么a+b>0

  B.如果a>0,b<0,那么a+b>0

  C.如果a>0,b<0,那么a+b<0

  D.如果a>0,b<0,且|a|>|b|,那么a+b>0

  《2.4.2有理数的加法运算律》测试

  7.张大伯共有7块麦田,今年的收成与去年相比(增产为正,减产为负)情况如下(单位:kg):+320,-170,-320,+130,+150,+40,-150.则今年小麦的总产量与去年相比(  )

  A.增产20 kg B.减产20 kg C.增长120 kg D.持平

  8.一口井水面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.5米,往下滑了0.1米;第二次往上爬了0.42米,却又下滑了0.15米;第三次往上爬了0.7米,却又下滑了0.15米;第四次往上爬了0.75米,却又下滑了0.2米;第五次往上爬了0.55米,没有下滑;第六次往上爬了0.48米,此时蜗牛有没有爬出井口?请通过列式计算加以说明

有理数的加法教案8

  教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。

  非常高兴,能有机会和同学们共同学习

  昨天,老师在七年级三班上课时,把他们分成七个小组,每个小组回答问题的情况以抢答赛的形式记分。你们看(出示投影)这是七年级三班七个小组回答问题的表现情况。答对一题得一分,记作+1分;答错一题扣一分,记作1分。第几组最棒?老师还没来得及计算出每个小组的最后得分,咱们班哪位同学能帮老师算出最后结果?(学生在教师引导下回答)

  我们已得出了每个小组的最后分数,那么哪个小组是优胜小组?(第一小组),回去以后,老师就把小奖品发给他们,相信他们一定会很高兴。

  同学们,这节课你们愿不愿意也分成几个小组,看一看那个小组的同学表现得最出色?(原意)那么老师就按座次给同学们分组,每一竖排为一组。老师把组号写在黑板上,以便记分。

  希望各组同学积极思考、踊跃发言。同学们有没有信心得到老师的小奖品?(有)同学们加油!

  我们已得到了这7个小组的最后得分,那位同学能试着用算式表示?(学生在教师指导下列算式)

  以上这些算是都是什么运算?(加法),两个加数都是什么数?(有理数),这就是我们这节课要学习的有理数的加法(板书课题)。

  刚才老师说要给七年级三班的.优胜组发奖品,老师手里有12本作业本,优胜组共6人,老师将送出的作业本数占总数的几分之几?(二分之一)分数最低的一组共7人,他们每人交给老师一个作业本,占总数的几分之几?(十二分之七)如果,老师得到的作业本记为正数,送出的作业本记为负数,则老师手里的作业本增加或减少几分之几?同学们能列出算式吗?(学生列式)对于这个算式,同学们还能轻易的感知出结果吗?(不能)

  对于有理数的加法,有的同学们能直接感知得到结果,有的靠感知是不够的,这就需要我们共同探索规律!(出示投影),观察这7个算式,每一个算式都是怎样的两个有理数相加?(引导学生回答)你们还能举出不同以上情况的算式吗?(不能),这说明这几个算式概括了有理数加法的不同情况。

  前两个算式的加数在符号上有什么共同点?(相同),那么我们就可以说这是什么样的两数相加?(同号两数相加)同学们还能观察出那几个算式可归为一类吗?(3、4、5、异号两数相加,6、7一个数同0相加)

  同学们已把这7个算式分成了三种情况,下面我们分别探讨规律。

  (1) 同号两数相加,其和有何规律可循呢?大家观察这两个式子,回答两个问题。(师引导观察,得出答案),那位同学能填好这个空?

  (2) 异号两数相加,其和有何规律呢?大家观察这三个式子回答问题。(引导学生分成两类,容易得到绝对值相同情况的结论。再引导学生观察绝对值不相同的情况,回答问题)哪位同学能概括一下这个规律?(引导学生得出)

  (3) 一个数同0相加,其和有什么规律呢?(易得出结论)

  同学们经过积极思考,探索出了解决有理数加法的规律,顾一下(出哪位同学能带领大家共同回顾一下?(出示投影,学生大声朗读)我们把这个规律称为有理数的加法法则。

  同学们都很聪明,积极参与探索规律,每个组都有不错的成绩。个别落后的组不要气馁,继续努力,下面老师就给大家一个得分的机会,看哪一组能[出题制胜]!(出示)

  (活动过程1后评价、加分;教师以其中一题为例,讲解题格式及过程;活动过程2后:让每组第三排同学评价加分)

  同学们已经基本掌握了有理数的加法法则,并会运用它,但七年级三班有几位同学对这一内容掌握的不是太好,以致在作业中出了毛病,他们为此很苦恼。希望咱们同学能帮帮他们,看哪位同学能像妙手回春的神医华佗一样药到病 除!(师生共同治病)

  看来同学们对有理数的加法已经掌握得很好了,大家还记得前面那个难倒我们的有理数的加法题呢?那位同学能解决这个问题呢?(学生口述 师板书)。在大家的努力下,我们终于攻破了这个难关。

  通过这节课的学习,大家有什么收获?(学生回答)同学们都有很多收获,老师认为收获最多的是优胜组的同学,因为他们能得到老师的小奖品,大家赶紧看看那一组获胜?欢迎优胜组上台领奖,大家掌声鼓励!

  同学们,希望你们在未来的学习和生活中都能积极进取,获得一个又一个的胜利。

有理数的加法教案9

  一.教学目标

  1.知识与技能

  (1)理解有理数加法的意义;

  (2)理解并掌握有理数加法的法则;

  (3)应用有理数加法法则进行准确运算;

  2.数学思考

  通过观察,比较,归纳等得出有理数加法法则。

  3.解决问题

  能运用有理数加法法则解决实际问题。

  4.情感与态度

  认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

  5.重点

  会用有理数加法法则进行运算.

  6.难点

  异号两数相加的法则.

  二.教材分析

  “有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。

  三.学校与学生情况分析

  双溪中学是靖安县的一所完全中学,在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。现在,班级中已初步形成合作交流和勇于探究的'良好学风,学生间互相评价和师生互动的课堂气氛已逐步形成。

  四.教学过程

  (一)比较下列各对有理数的大小关系。

  (1)7和4;

  (2)—7和4;

  (3)—3.5和—4;

  (4)—1/2和—2/3。

  师:用多媒体展示图片,组织复习引入新课。

  (二)探索规律,得出法则:

  课件演示:(设置六个探究活动,以原点为起点,小明在数轴上西右走动来表示情况,规定向东为正,向西为负)让学生体会两个数相加的规律。

  (1)同向情况:

  1.情景

  探究

  1:小明先向东运动5米,再向右运动3米,那么两次运动后的总结果是什么。

  探究

  2:小明先向西运动5米,再向西运动3米,那么两次运动后的总结果是什么。

  2.探究问题:有理数两个负数相加的和该怎么确定符号。怎么确定绝对值。(学生主动思考,展开讨论)

  3.猜一猜,说一说(分组概括两个负数的加法法则):

有理数的加法教案10

  一、教学内容分析

  本节课是有理数加法的法则推导和计算,在此基础上,学生已经学过了正数和负数的认识及实际表示的意义和有理数的大小比较。本节课将在此基础上授导学生学习有理数的加法法则,解决同号、异号两数相加的计算。

  二、学习者分析

  七年级的学生,其思维已经明显地具备了逻辑思维性,并且学生已经在我的要求下,学会了预习、初步养成了预习的习惯,逐渐养成了合作交流的习惯。只要我们教师通过具体的问题的指引、学生小组间的合作和交流,是可以完成本节课的教学目标的。

  三、教学目标

  1、使学生掌握有理数加法法则,并能运用法则进行计算;

  2、让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

  3、让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

  四、信息技术应用分析

  由于本节课的知识点是探究有理数加法法则,要求学生掌握并会运用,所以为了节省时间和极大的提高学生的学习兴趣,选用了多媒体进行教学,把所有的内容用电子的白板展示出来。

  五、教学过程

  1、复习提问,引入新知

  通过对小学加法及数轴知识的应用的复习,让学生既巩固了原来所学的知识,又可以引出新课。

  2、出示问题情境、解决新知

  在解决新知的过程中,由于学生利用已有的知识及题目提示,运用学生互相合作交流,并且由各个小组进行展示答案。

  3、探索发现,归纳新知

  利用学生展示的答案,学生分组进行归纳总结,得出有理数运算法则。

  学生通过合作交流,养成在日常生活中和别人交流合作的.好习惯。,通过展示成果培养了学生的自信心。

  4、展示例题、应用新知

  此环节巩固了所学知识,并且通过本环节让学生体会小组合作的乐趣,体会利用法则解决实际问题的方法。

  5、达标训练,巩固新知

  本环节进一步巩固了所学的知识,在互动回答是采用哪个小组举手多、举得早,让哪个小组来回答;让学生养成一种竞争意识,合作交流意识。

  6、规律总结,升华新知

  本环节着重总结有关有理数加法法则,让学生进行小结,逐步养成学生在解决问题时随时总结规律的习惯,并对本节课的知识进行梳理、加深和巩固。

  7、作业和运用,拓展新知

  通过作业学生进一步巩固所学知识,强化对知识的理解和应用,通过挑战自我来拓展学生知识面,发展学生的认识。

有理数的加法教案11

  今天我说课的题目是“有理数的加法(一)"。本节课选自华东师范大学出版社出版的〈义务教育课程标准实验教科书〉七年级(上),。这一节课是本册书第二章第六节第一课时的内容。下面我就从以下四个方面一一教材分析、教材处理、教学方法和教学手段、教学过程的设计向大家介绍一下我对本节课的理解与设计。

  一、教材分析

  分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

  1、 有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。

  2、 就第二章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的'符合和绝对值),关键是这一节的学习。

  从以上两点不难看出它的地位和作用都是很重要的。

  接下来,介绍本节课的教学目标、重点和难点。(结合微机显示)

  教学大纲是我们确定教学目标,重点和难点的依据。教学大钢规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:“(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;(4)渗透数形结合的思想。2能力目标是:(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、德育目标是;(1)渗透由特殊到一般的辩证唯物主义思想:(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是是;有理数加法法则的理解。

  二、教材处理

  本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程当中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计帘具体体现。而且在做练习的过程当中让学生互相提问,使课堂在学生的参与下积极有序的进行。

  三、教学方法和数学孚段

  在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

  四、教学过程的设计

  1, 引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。

  2, 探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程当中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。

  3, 巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程当中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。

  4, 归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。

  以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。

  要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。

  2、 就第一章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。

  从以上两点不难看出它的地位和作用都是很重要的。

  接下来,介绍本节课的教学目标、重点和难点。

  教学大纲是我们确定教学目标,重点和难点的依据。教学大纲规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:“(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;(4)渗透数形结合的思想。2能力目标是:(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、德育目标是;(1)渗透由特殊到一般的辩证唯物主义思想:(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是有理数加法法则的理解。

  以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。

有理数的加法教案12

  【教学目标】

  1. 通过学习,能感受到数学知识来源于生活又可应用于实际生活,激发学习的兴趣。

  2.通过探索,能归纳总结出有理数加法法则,理解有理数加法的意义渗透分类思想。

  3.掌握有理数加法法则,并能准确地进行有理数加法运算。

  【学习重点、难点】

  重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算;

  难点:异号两数如何相加的法则。

  【学习过程】

  一、 预习自学:

  1.蛋糕店上半年挣5万,下半年挣3万,请问一年共挣多少钱?

  2.蛋糕店上半年赔5万,下半年赔3万,请问一年共挣多少钱?

  3.蛋糕店上半年挣5万,下半年赔3万,请问一年共挣多少钱?

  4.蛋糕店上半年赔5万,下半年挣3万,请问一年共挣多少钱?

  5.蛋糕店上半年挣5万,下半年赔5万,请问一年共挣多少钱?

  6.蛋糕店上半年赔5万,下半年挣0万,请问一年共挣多少钱?

  请你列式计算,并引导学生对前面的七个加法运算进行合理的.分类探讨:和的符号怎样确定?和的绝对值怎样确定?(小组讨论展示)

  二、 教师点拨

  知识点一:引导学生对前面的七个加法运算进行合理的分类

  同号两数相加: (+5)+(+3)= ______.(-5)+(-3)= ______

  异号两数相加:(+5)+(-3)= ______;(-5)+(+3)= ______;

  (+5)+(-5)=______

  一数与零相加: (-5)+0=______;

  知识点二:探讨:和的符号怎样确定?和的绝对值怎样确定?

  结论:有理数加法法则:

  1.同号两数相加,取相同的符号,并把绝对值相加。

  2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  3.一个数同0相加,仍得这个数。

  三.例题精讲;例1(学生自学,教师示范。注意解题步骤)

  四、课堂练习;36页随堂练习与习题(小组展示交流)

  五、当堂检测;

  1.用生活中的事例说明下列算是的意义,并计算出结果:

  (-2)+(-3);(-3)+2

  2.有理数加法法则:

  绝对值不相等的两数相加,取绝对值的加数的符号,并用较大的绝对值较小的绝对值. 互为相反数的两个数相加得.

  3.计算:(+15)+(-7);(-39)+(-21);

  (-37)+22;(-3)+(+3)

有理数的加法教案13

  一.教学目标

  1.知识与技能

  (1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;

  (2)在有理数加法法则的教学过程中,注意培养学生的运算能力.

  2.过程与方法

  通过观察,比较,归纳等得出有理数加法法则。能运用有理数加法法则解决实际问题。

  3.情感态度与价值观

  认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

  二、教学重难点及关键:

  重点:会用有理数加法法则进行运算.

  难点:异号两数相加的法则.

  关键:通过实例引入,循序渐进,加强法则的应用.

  三、教学方法

  发现法、归纳法、与师生轰动紧密结合.

  四、教材分析

  “有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的'意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。

  五、教学过程

  (一)问题与情境

  我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1),这里用到正数与负数的加法。

  (二)师生共同探究有理数加法法则

  前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:

  足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

  (1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是

  (+3)+(+1)=+4.

  (2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是

  (-2)+(-1)=-3.

  现在,请同学们说出其他可能的情形.

  答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是

  (+3)+(-2)=+1;

  上半场输了3球,下半场赢了2球,全场输了1球,也就是

  (-3)+(+2)=-1;

  上半场赢了3球下半场不输不赢,全场仍赢3球,也就是

  (+3)+0=+3;

  上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是

  (-2)+0=-2;

  上半场打平,下半场也打平,全场仍是平局,也就是

  0+0=0.

  上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

  这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:

  1.同号两数相加,取相同的符号,并把绝对值相加;

  2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

  3.一个数同0相加,仍得这个数.

  (三)应用举例 变式练习&&</p>

  例1 口答下列算式的结果

  (1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);

  (5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.

  学生逐题口答后,师生共同得出:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

  例2(教科书的例1)

  解:(1)(-3)+(-9) (两个加数同号,用加法法则的第1条计算)

  =-(3+9) (和取负号,把绝对值相加)

  =-12.

  (2)(-4.7)+3.9 (两个加数异号,用加法法则的第2条计算)

  =-(4.7-3.9) (和取负号,把大的绝对值减去小的绝对值)

  =-0.8

  例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数

  下面请同学们计算下列各题以及教科书第23页练习第1与第2题

  (1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

  学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。

  (四)小结

  1.本节课你学到了什么?

  2.本节课你有什么感受?(由学生自己小结)

  (五)作业设计

  1.计算:

  (1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);

  (5)67+(-73);(6)(-84)+(-59);(7)-33+48;(8)(-56)+37.

  2.计算:

  (1)(-0.9)+(-2.7); (2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78;

  (5)7+(-3.04);(6)(-2.9)+(-0.31)(7)(-9.18)+6.18; (8)(-0.78)+0.

  3.用“>”或“<”号填空:

  (1)如果a>0,b>0,那么a+b ______0;

  (2)如果a<0,b<0,那么a+b ______0;

  (3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

  (4)如果a<0,b>0,|a|>|b|,那么a+b ______0

  (六)板书设计

  1.3.1有理数加法

  一、加法法则二、例1例2例3

有理数的加法教案14

  教学目标

  1、知识与技能:

  (1)有理数加法的运算律。

  (2)有理数加法在实际中的应用。

  2、过程与方法:

  (1)经历探索有理数加法运算律的过程,理解有理数的加法运算律。

  (2)利用运算律进行适当的推理训练,逐步培养学生的逻辑思维能力

  3、情感态度与价值观:

  (1)学生通过交流、归纳、总结有理数加法的运算律,体会新旧知识的联系。

  (2)通过运用有理数加法法则解决实际问题,来增强学生的应用意识。

  重点有理数加法的'运算律。

  难点运用加法运算律简化运算

  教学过程

  一、创设情景我们以前学过加法交换律、结合律,在有理数的加法中它们还适用吗?计算 30+(-20),(-20)+30。

  两次所得的和相同吗?换几个加数再试试。

  计算:-7+2 (-10)+(-5)

  二、探究新知

  1、填空

  (1)4+(-8)=____, (-8)+4=_____所以4+(-8)____ (-8)+4

  (2)(-9)+(-6)=____,(-6)+(-9)=___所以(-9)+(-6)____(-6)+(-9)于是可得a+b=_______

  2、

  (1)[2+(-3)]+(-8)=_______ 2+[(-3)+(-8)]=_______

  (2) (-5)+[7+(-2)]=______ [(-5)+7]+(-2)=____________于是可得(a+b)+c=________

有理数的加法教案15

  一、学情及学习内容分析

  “有理数的加法与减法”是基于规则为主的新授课型。

  有理数的加法与减法是在引入“负数”的基础上,将数的范围扩展到“有理数”范围内的加、减法运算。本节课从学生的生活经历和经验出发,创设情境,通过分析生活情境中的事理和观察温度计刻度的操作,得到了一些有理数减法的算式,用“化归”的思想方法归纳出有理数减法法则,并应用所学的有理数减法解决实际问题,整节课的设计流程和总体思路可以用下图表示:生活情境,动手操作——有理数减法算式———有理数减法法则———有理数减法的应用。

  二、教学目标及教学重(难)点

  教学目标:

  1、知识与技能:会根据减法的法则进行有理数减法的运算。

  2、过程与方法:经历分析生活情境中的数学事例,提炼其中的数学算式,并从中归纳有理数减法法则;经历将法则应用于解题的这一由一般到特殊的过程。

  3、情感态度与价值观:在由实际情境提炼数学算式的过程中,感受数学在我们的生活中;在这一过程中,渗透转化的思想方法,感受数学思想方法的导航作用。

  教学重点:有理数减法法则与运用

  教学难点:从实际情境到数学算式,从数学算式到法则的提炼,在法则的总结中体现化的思想方法的渗透。

  教学方法:观察探究、合作交流。

  三、教学过程设计:

  在课前让学生玩有理数加法中的扑克牌游戏。

  1、情境引入:

  师:同学们,大家都看过天气预报,有没有注意到里面有“温差”之说呢?

  有效性分析:通过设计“温差”这一问题情境,进而顺利的进入课题,并从列算式角度加以认识,得到一些有理数减法算式,为后面的化归思想方法归纳出有理数减法法则做好素材和算式上的准备。

  2、建构活动

  活动1:计算温差

  师:有理数加减

  生1:利用温度计的刻度直观得到算式5 + 3 = 8

  生2:利用日温差的定义可得到算式:5-(-3)= 8

  师:比较两式,我们有什么发现吗?

  生:“-”变“+”,(-3)变3。

  活动2:通过举例子验证刚才的变化过程,加深对有理数减法算式的理解。

  有效性分析:从生活情境中,学生获取了丰富的素材和有理数减法运算的算式,为下面观察算式特点,总结运算方法做好准备。这种由算式到法则的过程,使学生从心理上更易接受,令算式更有实际背景和说服力,为有理数减法运算法则的提炼和数学化打下了良好的基础。

  3、数学化认识

  5-(-3)=5 + 3(-3)-(-5)=(-3)+ 5

  3-(-5)=3 +5(-3)-5=(-3)+(-5)

  师:综合上面算式的共同特点即被减数不变,减号变加号,减数变成它的相反数,我们就得到了有理数减法法则:减去一个数,等于加上这个数的'相反数。

  有效性分析:“化归”的思想和方法是初中数学中最重要的方法之一,本节课的数学化过程正是通过观察已有的算式来发现和总结“有理数的减法法则”的,在教学中渗透了“化归”思想。此外,在化归为加法运算时,进一步复习加法法则,强化了有理数的减法与小学学的减法之间的联系和区别:即小学的减法是有理数减法中的一种特例,即减数比被减数小,;当减数比被减数大时,小学无法解决的问题现在可以解决了。

  4、基础性训练

  例1计算下列各题

  ①0-(-22)

  ②8.5-(-1.5)

  ③(+4)-16

  ④(?1

  2)?1

  4

  ⑤15-(-7)

  ⑥(+2)-(+8)

  基础练:

  1、课本p 322、3、4

  2、求出数轴上两点之间的距离:

  (1)表示数10的点与表示数4的点;

  (2)表示数2的点与表示数-4的点;

  (3)表示数-1的点与表示数-6的点。

  有效性分析:基础性训练中安排了典型例题,着重训练学生利用刚学过的“有理数的减法法则”进行计算的正确性和熟练度,并规范了计算题目的格式,在格式中进一步熟悉法则,正确运用法则,让学生明确有理数的减法的一般步骤是(1)变符号;(2)用加法法则进行计算

  3、拓展延伸

  巧用扑克牌进行有理数简单运算练习

  有效性分析:通过扑克牌的两个活动,进一步调动学生学习有理数减法运算法则的积极性和主动性,寓教于乐,在活动中通过小组带动班上所有学生学习的热情,同时在活动中更加明确运算法则,做到熟练而准确地运用法则,感受并思考:“两个有理数相减,差一定比两个减数小吗?”的问题,以区别于学生在小学中熟知的减法运算,更好的完成本节课的教学目标。

  四、教学反思

  “有理数的加法与减法”的教学,可以有多种不同的设计方案,但大体上可以分为两类:一类是由老师较快的给出法则,用较多的时间组织学生练习,以求熟练的掌握法则;另一类是适当的加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应的适当压缩法则的练,如本教学设计。本节课注重学生自我学习的能力,学生在学习了有理数加法后,再学习有理数的减法,教师把学习的主动权归还学生,不再是教师讲,学生听,现在变为学生讲,教师听,由学生自己发现问题,分析问题,解决问题。学生与教师分享彼此的思考,经验和知识,交流彼此的情感,体验与感悟,丰富教学内容,求的新的发展,从而达到共识,共享,共进。

【有理数的加法教案】相关文章:

有理数的加法教学反思07-16

有理数的加法教学设计05-06

10的加法教案01-03

加法教学教案11-06

《5的加法》教案01-30

《加法的认识》的教案09-07

加法课教案01-22

数学加法教案01-12

有理数的乘法教案11-09