可能性教案

时间:2024-10-07 19:14:53 教案 我要投稿

可能性教案范文汇编9篇

  作为一位不辞辛劳的人民教师,往往需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。我们应该怎么写教案呢?下面是小编为大家收集的可能性教案9篇,欢迎大家分享。

可能性教案范文汇编9篇

可能性教案 篇1

  第1课时

  [教学内容]摸球游戏(第87页)

  [教学目的]通过“摸球游戏”的活动,让学生了解数据表示的方式。又通过学生的讨论与交流,逐步使他们体会到数据表示的简洁性与客观性。

  [教学过程]

  1、交流中复习旧知

  师:同学们,我们已经认识了可能性的大小,请看下面一道题。教师呈现题目并配图,然后问:

  (1)你认为小青摸出的球可能是什么颜色?

  (2)哪一种颜色的球摸出的可能性大,为什么?与同学进行交流。

  2、在分析中理解数的表示方法

  师:现在盒子里只有2个红球,能否摸到白球呢?

  生:不能。因为盒子里没有白球。

  师:那么可以用一个数来表示从这个盒子里摸到的白球的可能性呢?

  生:用0,因为0代表没有。那么摸出红球的情况呢?

  生:一定能摸到红球,因为盒子里都是红球。

  师:从盒子里一定能摸到红球,我们说此时摸到红球的可能性是1。谁能说一说生活中哪些事情发生的.可能性是0,那些事情发生的可能性为1?(生举例说明)

  3、在观察、讨论中理解数的表示方法

  师出示一个只有1个红球与一个白球的盒子。

  师:从这个盒子中摸到红球的可能性是多少呢?

  生:摸到红球的可能性是一半。

  师:如果用数来表示摸到红球的可能性,可以怎样表示?

  生:12。

  师:这个同学说的很好,如果在盒子里在放入一个黄球,那么摸出红球的可能性怎样表示呢?让学生开展分组讨论。(也可以让学生自己想办法,如给每个球标上字母,再观察等)

  4、课堂练习:

  87页1题、2题。(生小组讨论)

  5、归纳小节:用数据表示可能性大小的方式。(可让学生自己,也可师生共同归纳)。

  6、布置作业:

  87页下面的实践活动题。

可能性教案 篇2

  学习目标:

  1.使学生通过复习,进一步体会事件发生的可能性的含义,知道可能性是有大小的,会用分数表示一些简单事件发生的可能性大小。

  2.进一步体会可能性与现实生活的密切联系,感受到生活中很多现象都具有随机性;

  3.培养简单推理的能力,增强学习数学的兴趣。

  教学重点:

  用分数表示可能性的大小,理解分数表示可能性的实际意义。

  教学难点:

  灵活运用可能性的有关知识,解释并设计游戏活动。

  教具准备:

  多媒体课件

  学习方法:

  动手操作、实验法、观察思考

  教学过程:

  一、复习可能性的含义以及可能性的大小

  1.出示下列四个图形:(投影出示)

  2.提出问题:从( )号口袋中摸出的一定是红球;从( )号口袋中摸出的一定是绿球;从( )号口袋中摸出的可能是红球,也有可能是绿球。

  追问:从上面哪两个口袋中摸球的结果是确定的,哪两个口袋中摸球的结果是不确定的?(确定 不确定)

  小结:是呀,生活中有些事情的发生是确定的,有些事情的发生是不确定的,这些都是事件发生的可能性。

  揭题:今天我们就来一起复习可能性。(板书:可能性)

  3.提出问题:从上面图3或图4的口袋中摸球,从哪个口袋中摸出红球的可能性更大一些呢?

  提问:你能用分数表示从③号和④号口袋中摸到红球的可能性的大小吗?

  从③号口袋中摸到红球的'可能性是( ), 从③号口袋中摸到绿球的可能性是( ), 从④号口袋中摸到红球的可能性是( ),从④号口袋中摸到绿球的可能性是( )。

  二、指导练习。

  1.做第1题。(投影出示)

  指出:这里有4张圆盘,任意转动指针,指针停留的区域有以下几种情况,你能将它们连起来吗?

  先让学生各自连一连,再指名说说思考过程。(多媒体演示)

  2.做第2题。(将分别标有数字1、2、3、4、5的5个小球放在一个盒子里。

  (1)任意摸1个球,下面几种情况是“不可能发生”,还是“一定发生”或“可能发生”?

  ①球上的数是奇数; ②球上的数小于6;

  ③球上的数大于5; ④球上的数不是5;

  先让学生各自判断,再指名说说思考过程。

  (2)任意摸1个球,球上的数是奇数的可能性大,还是偶数的可能性大?

  同桌讨论并说说为什么?

  追问:你能用分数分别表示摸到奇数和偶数的可能性大小吗?

  3.现有标上“1”“2”“3”“4”“5”“6”同样的6张牌。

  (1)任意摸1张,摸出数字“1”的可能性为几分之几?

  (2)任意摸1张,摸出数字为偶数的可能性为几分之几?

  (3)任意摸1张,摸出数字为素数的可能性为几分之几?

  (4)照这样操作下去,如果要使摸出偶数的可能性为7/10,你有办法吗?

  三、材料分析。

  在举行中国象棋决赛前夕,学校公布了参加决赛的两名棋手的有关资料。

  李俊 张宁

  双方交战记录 5胜6负 6胜5负

  在校象棋队练习成绩 15胜3负 11胜5负

  (1)你认为本次象棋决赛中,谁获胜的可能性大些?说说理由。

  (2)如果学校要推荐一名棋手参加区里的比赛,你认为推荐谁比较合适?简要说明理由。

  四、全课小结

  五、课堂作业:设计销售方案。

  超市有多种口味的果冻:有草莓味、柠檬味、苹果味。销售部接到了儿童乐园的一份订单,要求是:要在包装袋中装入若干个草莓、苹果、柠檬三种口味的果冻,要求从包装袋中摸到柠檬口味的果冻的可能性为。

可能性教案 篇3

  教学目标

  1、使学生通过复习,进一步体会事件发生的可能性的含义,知道可能性是有大小的,会用分数表示一些简单事件发生的可能性大小。

  2、进一步体会游戏规则的公平性,能判断简单游戏规则是否公平,能设计简单的公平游戏规则。

  3、使学生通过复习,进一步体会可能性与现实生活的密切联系,感受到生活中很多现象都具有随机性,培养简单的推理能力,增强学习数学的兴趣。

  教学过程

  一、复习可能性的含义以及可能性的大小

  1、出示下列四个图形

  四个袋子里分别装有4个球:1号袋有4个黑球;2号袋有4个白球;3号袋有3个黑球和1个白球;4号袋有1个1个黑球和3个白球

  2.提问:从上面的某个口袋中任意摸一个球,从哪个口袋中摸出的一定是黑球?从哪个口袋中摸出的一定是白球?从哪个口袋中摸出的一有可能是黑球,也有可能是白球?

  3.师小结:有些事情的发生是确定的,有些事情的发生是不确定的,这些都是事件发生的可能性。

  4. 用分数来表示图3、4的口袋中摸到黑球和白球的可能性大小.

  5.完成后进行交流。

  二、完成练习与实践的1-3题。

  1、完成第1题,要让学生连线后,说说连线时的思考过程。

  2、第2题在学生独立判断的基础上,再说说思考的方法。

  3、第3题,要抓住怎样理解明天的降水概率是80%这句话的?再让学生按要求进行判断。

  三、复习游戏规则的公平性

  1、创设游戏情境,让学生判断游戏是否公平,为什么?

  2、启发学生思考,要使游戏规则公平,你认为口袋里可以怎样放球,为什么?

  3、小结:不管怎样放球,只要使参加游戏的小朋友摸到指定的球的可能性大小相等,这样的游戏规则就是公平的。

  四、指导完成练习与实践的4-5题。

  1、让学生交流对题目的理解。

  2、让学生各自判断第(1)题中的三种方法是否公平,再交流思考的过程。

  3、交流时可让学生排一排石头、剪刀、布的游戏,可能有几种不同的结果。

  4、完成第5题。着重要让学生说说每个分数的思考过程,注意让学生从不同的角度进行思考。

  五、全课小结

  通过这节课的复习,你对可能性又有了哪些新的认识?课后再收集一些有关可能性的例子,从中提出一些问题进行解答。

  六、补充练习

  前思考:

  考虑到《统计与可能性》这部分知识难度不大,所以将潘老师设计的两课时合并成一课时上。

  通过本课时的复习,帮助学生弄清有些事件的发生是确定的,有些事件的发生是不确定的(即有可能发生);再进一步认识到:在不确定的事件中,有些结果出现的可能性大一些,有些结果出现的可能性小一些,然后复习用分数来表示可能性的大小。判断一个游戏规则是否公平,应该看可能出现的游戏结果中,每种结果出现的可能性大小是否相等。

  课前思考:

  练习与实践的第1题要让学生说说连线的思考过程,突出有些事件的发生是确定的,有些事件的发生是不确定的,而不确定中,有些结果出现的可能性会大一些,而有些结果出现的可能性会小一些。第2题(2)要突出判断的理由。交流后教师可再引导学生思考,任意摸1个球,球上的数是素数的可能性大,还是合数的可能性大?还可以让学生说说球上的数是大于3的可能性大,还是小于3的可能性大?充分利用教材中的素材,加深对可能性含义的认识。

  课后反思:

  通过复习,我发现对于选择哪种统计量来表示一组数据的.一般情况和分析游戏规则是否公平时,学生们会感到有困难。

  如出示一组学生跳绳情况的统计数据,在求出这组数据的众数、中位数和平均数后让学生选择用哪个统计量表示这些同学的跳绳情况比较合适。这里需要学生分析这组数据中有没有极端数据以及平均数的位置是否偏离这组数据的中心。对于少数学生来讲,要做这样的数据分析的确困难不少。针对学生学习中出现的这些情况,还需要补充类似的练习,帮助学生进一步掌握这些知识。

  课后反思:

  练习与实践的第4题学生对做石头、剪刀、布游戏,来判断谁先套圈的方法,理解上会有一定的困难。关于第(3)题设计游戏规则,提醒学生,设计的方法应该有可能出现三种结果,而且每种结果出现的可能性要相等。第5题(2)鼓励学生根据指定的可能性设计不同的选法,提醒学生在每次选择后及时进行验算,以确认选择的方法是否符合指定的要求。

可能性教案 篇4

  教学目的:

  1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

  2、通过实际操作活动,培养学生的动手实践能力。

  3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。

  教学重、难点:

  能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

  教学过程:

  一、引入

  用自己的`话说一说什么是“可能性”举例子说明。

  今天我们继续学习

  教案《人教版三年级数学上册《可能性》教案》,来自网!

  关于“可能性”的知识。

  二、实践探索新知

  1、教学例3(比较两种结果的可能性大小)

  (1)观察、猜测

  出示小盒子,展出其中的小球色彩、数量,(四红一蓝)

  如果请一位同学上来摸一个球,你们猜猜他会摸到什么颜色的球?

  和同桌说一说,你为什么这样猜?

  (2)实践验证

  学生小组操作、汇报实践结果。

  汇总各小组的实验结果:几组摸到红,几组摸到了蓝色。

  从小组汇报中你发现了什么?为什么会有这样的情况?

  小结:摸到红色多,摸到蓝色的少,因为盒中球红多蓝少。

  (3)活动体验可能性的大小

  小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。

  活动汇报、小结

  实验过程中,要让学生体会到两点:一、每次摸出的结果是红色还是蓝色,这是随机的,不以人的主观意愿而变化。二、但摸的次数多了以后,在统计上就呈现某种共同的规律性,就是摸出蓝的次数比红多。

  (4)小组实验结果比较

  比较后,你发现了什么规律?

  出示多组的实验结果,虽然数据不一致,但呈现的规律是相同的

  2、教学例4

  (1)出示盒内球(一绿四蓝七红)

  (2)猜一猜,摸出哪种颜色的球可能性最大,摸出哪种颜色的球的可能性最小?为什么?

  3、P106“做一做”

  图中每种颜色进行了分割,此时学生可以用数份数的方法来看三种颜色所占的区域大小。

  利用前面学过的分数的知识让学生说一说每种颜色占整个圆面的几分之几,为以后学习可能性的精确值做铺垫(因为概率与这些分数相等)。

  三、练习

  P1094

  第4题,是一种逆向思维。并体现开放性,如第1小题,只要红比蓝多,就能满足条件。第2小题,只要蓝比红多,都满足条件。

  P1095

  教学反思:

可能性教案 篇5

  【教学目标】

  1.通过让学生经历实际问题的情景,认识事件发生可能性大小的意义。

  2.了解事件发生的可能性大小是由发生事件的条件来决定的。

  3.会在简单情景下比较事件发生的可能性大小。

  4.通过创设游戏情境,让学生感受到生活中处处有数学。主动参与,做“数学实验”,激发学生学习的热情和兴趣,激活学生思维。

  【教学重点、难点】

  教学重点:认识事件发生可能性大小的意义。

  教学难点:在问题情景比较复杂的情况下,比较事件发生的可能性大小

  【教学过程】

  一、 创设情境引入新知

  提出问题:在一个盒子里放有4个红棋,1个蓝棋,摸出一个棋子,可能是什么颜色?摸出红棋的可能性大还是摸出蓝棋的可能性大?

  为了解决这个问题,可先让学生分小组进行摸球游戏:

  1、每位同学轮流从盒子中摸球,记录所摸得棋子的颜色,并将球放回盒中。

  2、做20次这样的活动,将最终结果填在表中。

  3、全班将各小组活动进行汇总,摸到红棋的次数是多少?摸到蓝棋的次数是多少?

  4、如果从盒中任意摸出一球,你认为摸到哪种颜色的棋子可能性大?

  游戏的结论:

  在上面的摸球活动中,每次摸到的球的颜色是不确定的。摸出红棋的可能性比摸出蓝棋的可能性大,原因是红棋的数量比蓝棋多。

  一般地,不确定事件发生的可能性是有大小的。

  说明:摸棋游戏教师首先要使学生明确试验的过程,“摸出一个棋子,记录下它的颜色,再放回去,重复20次”。然后还要使学生明确组内成员的分工,应有人负责摸出棋子,有人负责记录下它的颜色,并应提醒学生在试验前要选择好统计试验数据的方法(可以用画“正”字的方法)。而且还要向学生说明在试验的过程中,应注意保证试验的随机性,如:每次摸棋子前应将盒中的棋子摇匀;摸棋子时不要偷看等。在各小组进行试验的过程中,教师应关注每一个小组,及时给予指导,保证试验的随机性。

  二、观察思考 理解新知

  请考虑下面问题:

  (1)如果你和象棋职业棋手下一盘象棋,谁赢利的可能性大?

  分析:根据本人的实际棋艺水平来确定,答案不唯一。

  (2)有一批成品西装,经质量检验,正品率达到98%。从这批西装中任意抽出1件,是正品的可能性大,还是次品的可能性大?

  分析:要比较“任意抽出1件是正品”与“任意抽出1件是次品”两个事件发生的可能性大小,只要比较两个事件发生的条件:“正品率达到98%”与“次品率达到2%”,显然抽到正品的可能性大。

  (3)任意抛一枚均匀的硬币,出现正面朝上、反面朝上的可能性相等吗?

  分析:任意抛一枚均匀的硬币,有两种可能①正面朝上②反面朝上,因为它们出现的机会均等,所以出现正面朝上、反面朝上的可能性相等。

  (4)一个游戏转盘如图,红、黄、蓝、绿四个扇形的圆心角度数分别是90°,60°,90°,120°。让转盘自由转动,当转盘停止后,指针落在哪个区域的可能性最大?在哪个区域的可能性最小?有可能性相等的情况吗?为什么?

  分析:因为绿色扇形区域面积最大,黄色扇形区域面积最小,红、蓝色扇形区域面积相等,所以指针落在绿域的可能性最大,黄域的可能性最小,红、蓝域的可能性相等。

  从上可得出以下结论:

  ①事件发生的可能性大小是由发生事件的条件来决定的。

  ②可能性的大小与数量的多少有关。

  数量多(所占的区域面积大)?可能性大

  数量少(所占的区域面积小)? 可能性小

  三、师生互动运用新知

  例1某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?

  分析:在教学中要求学生先分清事件发生的条件分别是什么?事件“遇到红灯”发生的条件是“红灯时间设置40秒”,事件“遇到绿灯”发生的条件是“绿灯时间设置60秒”,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到红灯的可能性最小。本例相对容易,可让学生通过交流自己完成。

  完成P76 1,2的做一做

  例2某旅游区的游览路线图如图3—4所示.小明通过入口后,每逢路口都任选一条道.问他进人A景区或B景区的可能性哪个较大?请说明理由.

  分析:本题有一定难度,教学时要抓住这两个事件发生的条件,可分以下几个步骤:

  (1)小明进入旅游区后一共有多少种可能的路线?可以把小明进入旅游区的A景点或进入旅游区B景点的过程分解为两个步骤:第一步进入左、中、右主干线,有3种可能,第2步进入每条主干线的两条支线,各有2种可能;

  (2)将上述结果列表或画树状图;

  (3)确认各种可能性是否相等,确认“进入A景点” “进入B景区”分别占了多少种,也就是确定两个事件发生的条件;

  (4)比较两个事件发生的条件,判定哪个事件发生的可能性大。

  完成课内练习1,2

  四、梳理知识 形成结构

  通过本节课的`学习,谈谈你的收获?

  在交流中,师生可共同梳理知识点:

  (1)事件发生的可能性大小是由发生事件的条件来决定的。

  (2)可能性的大小与数量的多少有关。

  数量多(所占的区域面积大)?可能性大

  数量少(所占的区域面积小)? 可能性小

  五、应用新知 体验成功

  1、小明任意买一张电影票(每排有40个座位),座位号是2的倍数与座位号是5的倍数的可能性哪个大?

  答案: 2的倍数可能性哪个大。

  2、请你在班上任意找一名同学,找到男同学与找到女同学的可能性哪个大?为什么?

  答案:要根据该班的男、女实际人数来确定.如该班男同学22名,女同学24人,则任意找一名同学,找到女同学与的可能性比找到男同学的可能性大。

  3、某公交车站共有1路、12路、31路三路车停靠,已知1路车8分钟一辆;12路车5分钟一辆、31路车10分钟一辆,则在某一时刻,小明去公交车站最先等到几路车的可能性最大。

  答案:间隔时间最短,31路车间隔时间最长,所以小明去公交车站最先等到12路车的可能性最大。

  4、盒子中有8个白球、4个黄球和2个红球,除颜色外其他相同。任意摸出一个球,可能出现哪些结果?哪一种可能性最大?哪一种可能性最小?

  答案:任意摸出一个球,可能摸出白球、黄球或红球。任意摸出一个球,摸出白球可能性最大,摸出红球可能性小。

  5、如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:小猫踩在哪种颜色的正方形地板上可能性较大?

  讲故事 5张

  唱 歌 3张

  跳 舞 1张

  答案:由于黑色正方形比白色正方形块数多,所以小猫在地板上行走,踩在黑色的正方形地板上可能性较大。

  6、联欢会上小红可能抽到什么节目?

  抽到什么节目的可能性最大?抽到什么节目的 可能性最小?

  答案:联欢会上小红可能抽到的节目是讲故事、唱歌或跳舞。抽到讲故事节目的可能性最大。

  7、连续两次抛掷一枚均匀的硬币,朝上一面有几种可能?你认为两次正面朝上与一次正面朝上、一次正面朝下发生的可能性哪个大?

  答案:

  朝上一面有4种可能:①正、正 ②正、反③反、正 ④反、反。

  一次正面朝上,另一次正朝面下发生的可能性大。

  六、布置作业巩固新知

  作业题:1 — 4必做5、6选做。

可能性教案 篇6

  教学内容:义务教育课程标准实验教科书三年级上册106页例3及“做一做”,练习二十的第4、6、10题。

  教学目标:

  1、知识目标:经历可能性的试验过程,知道事件发生的可能性是有大小的。

  2、能力目标:培养学生通过实验获取数据、利用数据进行猜测与推理的能力;并能列出简单试验所有可能发生的结果。

  3、情感目标:在活动交流中培养合作学习的意识和能力。

  教学重点:学生通过试验、收集和分析试验数据知道事件发生的可能性是有大小的。

  教学难点:利用可能性的知识解决实际问题。

  教学准备:两个转盘、盒子、红球24个、蓝球6个、漂亮的卡通人物、硬币、多媒体课件,颜色笔。

  教学过程:

  一、创设情境,激趣猜测

  1、听故事,激发学习兴趣

  (1)老师知道同学们最喜欢听故事,特意准备了一个《小猴子下山》的故事,想听吗?

  (动画播放:有一天,小猴子下山来。它看见玉米地里的玉米结得又大又多,就掰了一个扛着往前走。走着走着,来到桃树底下,看见满树的桃子又大又红,就扔了玉米去摘桃子。小猴子棒着几个桃子走到一个瓜地里,它看见满地的西瓜又大又圆,就扔了桃子去摘西瓜。它抱着一个大西瓜往回走,走着走着,看见一只小兔蹦蹦跳跳的多可爱,就扔了西瓜去追小兔。)

  2、猜测:请同学们想一想,小猴去追小兔,结果会是怎样呢?

  学生猜测:它有可能追到小兔,也有可能追不到小兔。

  师:那追到的可能性会......很小。

  3、有些同学认为小猴不可能捉到小兔,有些同学认为小猴还有可能捉到小兔,只是可能性很小,看来,事情的发生不仅有可能性,而且发生的可能性还有大、有小。今天这节课我们就继续来学习有关可能性的问题。

  (板书课题:可能性的大小)

  实践是最好的老师,下面我们就通过摸球试验来研究,好吗?

  二、探究、验证

  1、试验准备。

  (1)介绍试验材料。

  师:每个小组准备了一个盒子,盒子里都有红球和蓝球。

  (2)说明试验要求。

  (多媒体出示小组合作要求。)

  师:请同学们根据屏幕上的要求进行摸球试验,摸球20次,根据摸球的情况完成好摸球情况统计表和统计图,然后观察统计图思考以下两个问题:(一)摸到哪种颜色球的可能性大?

  (二)摸到哪种颜色球的可能性小?

  (3)提出注意事项。

  师:最后还请同学们特别注意:摸球时不能用眼晴看,摸球试验结束后不要打开盒子哟,能做到吗?下面请小组长拿出记录表和统计图,就可以开始试验了。

  2、合作试验、初步推测。

  (1)各小组试验,教师巡视。

  (2)观察、汇报。

  师:谁把你们组的试验结果汇报一下?

  生汇报。

  3、推理、验证、归纳。

  (1)观察。

  (集中展示各小组的摸球情况统计图。)

  师:这是我们6个小组的摸球情况统计图,请同学们仔细观察,你发现什么呢?

  生发现:每个小组都是摸出红球的可能性大,摸出蓝球的可能性小。

  师:(疑惑地)咦!每个盒子里都有红球和蓝球,为什么每个小组都是摸出红球的可能性大,摸出蓝球的可能性小呢?

  (2)思考。

  师:这都是你们的推测,到底对不对呢?有什么方法可以知道?

  师:好!莫老师数三声,我们就一起把盒子打开。

  师:请同学们数一数,红球有几个?蓝球有几个?看了这些颜色球的数量,再联系刚才的试验结果,你知道了什么?

  (红球的数量多,摸到的可能性大,蓝球的数量少,摸到的可能性小。)

  师:也就说,在摸球试验中,可能性的大小和什么有关系呢?

  (与球的数量有关。)

  师:如果让你在自己小组的盒子里再摸一次,你觉得摸到什么颜色球的可能性大?为什么?好,请六个小组长一起来摸摸看。

  (3)归纳。

  师:同学们通过刚才的摸球试验发现了可能性的大小与不同颜色球的数量有关。哪种颜色球数量多,它的可能性就......(大);哪种颜色球数量少,它的可能性就......(小)。那可能性小是不是就代表没有可能摸到呢?

  三、应用、拓展

  师:其实生活中还有不少事情的出现与可能性的`大少有关,你们能运用可能性知识来解决一些生活中的实际问题吗?

  1、转转盘。(课本106页的“做一做”。)

  师:看,这里有个大转盘,想来转转吗?莫老师手里有许多漂亮的图片,你来选一种颜色格,如果你真的转到那种颜色格的话,我就送你一个图片,谁想来试试?还有谁想来?

  (生可能会选黄色)你为什么会选黄色格呢?

  (因为黄色格的数量多,红色格的数量少,所以转到黄色的可能性大。)

  转转试试看?

  不行,每次都是你们赢,我得换个转盘,这次如果你还是转到黄色格的话,我就送你一张更漂亮的图案,谁来转?(指名3名学生上台转)

  师:为什么只有()个同学拿到图案?

  (因为黄色格的数量少,蓝色的数量多,转到黄色的可能性小。)真聪明!那就把这张图案送给你吧?

  3、拓展。

  师:老师这里还有一个有趣的转盘(出示幸运转盘)。

  商场为了吸引顾客购物,经常让顾客参与购物转奖的游戏。他们为什么把一等奖的部分这样设计呀?

  (因为一等奖的奖品很贵重,所以要让人们转到一等奖的可能性小,转到其它奖的可能性大。)

  师:你们能用学到的数学知识解释生活中的问题,真是棒极了!

  2、设计转盘。(练习二十第4题。)

  师:看了这个转盘,你们想不想也来设计这样有趣的转盘?

  (1)课件出示设计要求。

  请同学们在书本109页上涂一涂。

  (2)谁想上来展示一下自己的作品?(用实物投影仪投影学生作品)

  问:在设计转盘时你是怎样想的呢?你们也是这样想的吗?

  (3)。

  师:在设计第一个转盘时我们只要使得红色格的数量比蓝色格多就行了,在设计第二个转盘时只要使得蓝色格的数量比红色格多就可以了,你们都设计出了符合要求的转盘了吗?

  4、解决问题。

  师:今天还有一位我们非常熟悉的朋友来到了我们的课堂,看谁来了?(课件出示小猫扑蝴蝶)

  师:小精灵明明带着他的魔棒来了,还有谁来了?(小猫)

  师:听,小精灵有问题要问了:天空中有7只黄蝴蝶,3只红蝴蝶,小猫随意扑一只,扑到哪种蝴蝶的可能性大呢?

  (小猫扑到黄色蝴蝶的可能性大。)

  师:那我们就来看看小猫是不是扑到黄色蝴蝶的可能性大。(课件演示小猫扑到了一只黄色的蝴蝶。)

  师:看来确实是扑到黄蝴蝶的可能大。现在天空中还有几只黄蝴蝶和几只红蝴蝶?小猫再随意扑一只,扑到哪种蝴蝶的可能性大呢?

  (天空中还有6只黄蝴蝶3只红蝴蝶,小猫随意扑一只,还是扑到黄色蝴蝶的可能性大。)

  师:我们一一看。(课件演示小猫扑到了一只红蝴蝶。)

  师:(疑惑地)咦!不是说小猫扑到黄蝴蝶的可能性大吗?怎么会扑到一只红蝴蝶呀?

  (因为天空中还有红蝴蝶,所以还是有可能扑到红蝴蝶的,只不过扑到红蝴蝶的可能性小一点。)

  师:扑到红蝴蝶的可能性小并不是说不可能扑到红蝴蝶。

  听!小猫又有问题想问了:你能想办法让我扑到红蝴蝶的可能性大吗?(增加红蝴蝶的只数,让它的只数比黄蝴蝶多。)

  (师用课件演示:小精灵用它的魔棒增加了7只红蝴蝶。)

  5、猜一猜。(练习二十第10题。)

  师:下面我们来做个游戏怎么样?这里有四个盒子,其中只有一个盒子里面放着一个硬币,你来猜一猜,可能会在哪个盒子里?下面我们来统计一下,注意:每个同学只能选择一次;认为在一号盒子里的举手,认为在二号盒子的,三号盒子,四号盒子。

  师:下面我们来揭晓,哦!原来在2号盒子里。也就说只有X个同学猜对了。现在请同学们想想,为什么猜对的人少,而猜错的人多呢?

  汇报:因为硬币只能在四个盒子中的一个,有三个盒子中没有,所以猜错的人数多,猜错的可能性就大。

  师补充:虽然猜对的可能性小,但我们也是有可能猜对的。

  四、、延伸

  1、延伸。

  师:其实,关于可能性的问题,在很久以前就有不少的数学家做过研究,最典型的是掷硬币的试验。同学们看一看,这是一枚1元的硬币,将硬币掷出,结果会怎样?掷到哪一面的可能性大呢?今天的作业是回家后,请你和爸爸、妈妈一起来做一做这个掷硬币的小试验,自定试验次数,老师建议次数多一点,这样试验结果才准确;并将硬币正、反面朝上的情况做好统计,明天把你的试验结果记录表拿回来全班一起交流好吗?

  2、。

  (1)今天这节课你学会了什么?最高兴的是什么?对自己的学习满意吗?你觉得老师表现得怎样?

  (3)师:刚才《小猴子下山》的故事还没讲完,想听完吗?

  出示录音:小兔子看到小猴追上来,马上串进草丛里不见了,这时太阳快下山了,小猴只好空着手回家去了。

  师:看了这个故事结果后,你们有话要跟小猴子说吗?

  小朋友们,我们可不要像小猴那样三心两意哦!

  五、板书设计

  可能性大小

  数量多可能性大

  数量少可能性小

可能性教案 篇7

  本单元共安排了5个例题。主题图、例1、例2体验事件发生的确定性和不确定性。例3、例4、例5及相关内容能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

  1.体验事件发生的确定性和不确定性。

  对于纷繁的自然现象与社会现象,如果从结果能否预知的角度出发去划分,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定现象。例如,抛一个石块,可预知它必然要下落;在标准大气压下且温度低于0℃时,可预知冰不可能融化。另一类现象的结果是无法预知的,即在一定的条件下,出现哪种结果是无法事先确定的,这类现象称为随机现象或不确定现象。例如,掷一枚硬币,我们无法事先确定它将出现正面,还是出现反面。

  教科书通过主题图及例1、例2的教学,使学生初步体验在现实世界中有些事件的发生是确定的,有些则是不确定的

  (1)主题图的教学。

  教科书第104页呈现了学生熟悉的“新年联欢会上抽签表演节目”的场景,引入本单元的学习。目的是从学生已有的生活经验出发,使学生体验在现实生活中存在着不确定现象,感受数学与日常生活的密切联系。教学时,教师可以先让学生观察图意,描述图意,调动学生学习的主动性和积极性,再引导学生说一说自己在“抽签表演节目”时的实际感受。使学生在观察、描述和交流的活动过程中充分感受到,在用抽签来决定表演的节目的活动中,“表演某种节目”这样的事件的发生是不确定性的。教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是不确定的。

  需要注意的是,只要学生能够结合具体的问题情境,用“可能”等词语来描述就可以了,如“我可能要表演唱歌”。不必要求学生一定要说出“我表演唱歌这件事情的发生是不确定的”。

  (2)例1的教学。

  教科书呈现了学生摸棋子的试验,使学生在猜测、试验与交流的活动中初步体验有些事件的发生是确定的,有些事件的发生则是不确定的。教科书中给出了两个盒子装有不同情况的棋子,是想通过两个简单试验的对比,让学生更好地体会确定事件和不确定事件。教师可以依照教科书中的图示分别在两个盒子里放进各种颜色的棋子(也可选用乒乓球等),注意这些棋子除了颜色外应完全相同,并将放棋子的过程完整地展现给学生,而且在每次摸棋子之前都应将盒中的棋子摇匀。

  教科书中一共提出了三个问题,提示教学的过程、反映不同方面的要求。

  ①教学第一个问题“哪个盒子里肯定能摸出红棋子”。教师可以先提问“左边的盒子里肯定能摸出红棋子吗?”让学生进行猜测,再让学生实际摸摸看。通过试验,验证自己的猜测,认识到在左边的盒子里装的都是红棋子,所以一定能摸出红棋子,“在左边的盒子里摸出红棋子”这个事件的发生是确定的。教师再提问“在右边的盒子里肯定能摸出红棋子吗?”让学生进行猜测,再让学生实际摸摸看。通过试验,使学生发现在右边的盒子里有红棋子,所以可能摸出红棋子,但不一定能摸出红棋子,“在右边的盒子摸出红棋子”这个事件的发生是不确定的。

  ②②第二个问题“哪个盒子里不可能摸出绿棋子”和第三个问题“哪个盒子里可能摸出绿棋子”可一同教学。教师可以先引导学生猜测“左边的盒子里可能摸出绿棋子吗?”“右边的盒子里可能摸出绿棋子吗?肯定能摸出绿棋子吗?”,同样再让学生讨论交流,并通过试验,验证自己的猜测,认识到因为左边的盒子里没有绿棋子,所以不可能摸出绿棋子,“在左边的盒子里不能摸出绿棋子”这个事件的发生是确定的;在右边的盒子里有绿棋子,可能摸出绿棋子,但不一定能摸出绿棋子,“在右边的盒子里摸出绿棋子”这个事件的发生是不确定的。

  ③教学中,教师应充分地为学生提供猜测、试验与交流的机会,有条件的地方宜采取小组合作学习的方式。教师可以依照教

  科书中的图示,事先为每个小组准备两个盒子和两袋棋子,为了交流方便,可以给盒子标上序号1和2。在教学时,先指导学生分别将两袋棋子放入两个盒子,然后逐一提出教科书中的问题。教师还要提醒学生,在每次摸棋子前应将盒中的棋子摇匀。提出一个问题后,先让学生在小组内充分讨论、试验,然后再全班交流。使学生充分经历猜测、试验与交流的活动过程,丰富学生对确定现象和不确定现象的体验。

  ④另外,在汇报时只要学生能够结合具体的问题情境,用“在左边的盒子里一定能摸出红棋子”“在右边的盒子里可能摸出红棋子”等描述进行表达就可以了,不必要求学生一定要说出“在左边的盒子里摸出红棋子这个事件的发生是确定的”,“在右边的盒子摸出红棋子这个事件的发生是不确定的”。

  ⑤(3)例2的教学。

  ⑥教科书呈现了六幅与现实世界的自然现象和社会现象紧密相关的`画面,通过生活实例丰富学生对确定和不确定事件的认识,让学生根据已有的知识和生活经验学会判断哪些事件的发生是确定的,哪些事件的发生是不确定的。

  ⑦教学时,教师可以先让学生观察图意,独立思考,根据自己已有的知识经验做出判断,再引导学生讨论。使学生在描述、思考和讨论交流的活动过程中充分感受确定和不确定现象。需要注意的是,在让学生判断事件发生的确定性和不确定性时,只要学生能够结合具体的问题情境,用“一定”“不可能”“可能”等词语来表述就可以了,如“地球一定每天都在转动”“三天后可能下雨”“太阳不可能从西边升起”等。不必要求学生一定要说出“我从出生到现在没吃过一点东西这件事的发生是确定的”“吃饭时,人用左手拿筷子这件事情的发生是不确定的”“每天都有人出生这件事情的发生是确定的”。

  ⑧教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是确定的,什么事情的发生是不确定的。另外,教师还应有意识地寻找一些带有感情色彩的事件让学生来判断其发生的确定性和不确定性,如“明天的拔河比赛我们班会赢”。让学生认识到对于某一客观事件来说,其发生的确定性和不确定性与个人的愿望无关。

  ⑨2.能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

  ⑩随机现象虽然对于个别试验来说无法预知其结果,但在相同条件下进行大量重复试验时,却又呈现出一种规律性,我们称它为随机现象的统计规律性。概率论正是揭示这种规律性的一个数学分支。

  为了叙述的方便,把条件每实现一次,叫做进行一次试验。例如对“掷一枚硬币,出现正面”这个事件来说,做一次试验就是将硬币抛掷一次。如果一个试验在相同条件下可以重复进行,而每次试验的可能结果多于一个,在一次试验中结果无法事先确定,这种试验就叫做随机试验。把随机试验中,可能发生也可能不发生的事情,称为随机事件。

  一个随机事件的发生既有随机性(对单次试验来说),又存在着统计规律性(对大量重复试验来说)。随机事件的统计规律性表现在:随机事件的频率──即此事件发生的次数与试验总次数的比值具有稳定性,即总是在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们给这个常数取一个名字,叫做这个随机事件的概率。概率可以看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小。上述关于概率的定义,通常称为概率的统计定义。

  由于学生的年龄和思维特点,他们一般只能在感性的层面理解概率的知识。因此,教科书通过例3、例4和例5的教学,使学生在试验活动中,认识简单试验所有可能发生的结果,初步感受随机现象的统计规律性,并知道事件发生的可能性是有大小的。

可能性教案 篇8

  活动一:完成调查表

  活动二:接力长跑

  活动三:有奖游戏

  教学内容:

  教材P93《铺地砖》

  教学目标:

  l.通过活动,使学生能应用面积计算的知识解决铺地砖的实际问题,能从实际需要出发,合理地选择所需的地砖,能根据不同要求灵活解决实际问题。

  2、进一步增强估算意识,提高学生运用数学解决生活中问题的能力。

  3.培养学生用数学的意识和创新精神,并在实践中对学生进行美育渗透,培养学生的审美意识。

  4. 体会数学与生活的.联系,感受数学的作用和价值。

  教学重点:

  运用多种知识解决问题。 合理地选择所需的地砖,根据不同要求灵活解决问题。

  教学难点 :

  灵活运用面积计算的知识解决实际问题。

  教学流程与设计

  一、汇报课前调查情况,做好设计准备

  师:要铺地砖,我们必须先选地砖,那选地砖时必须要考虑哪些条件才能选好呢?

  师根据学生的回答,出示各种地板模型及规格。(40×40,50×50)

  二、联系实际,小组讨论计算。

  1、出示卧室地面的平面图,并介绍地面的长和宽,分别是长5米,宽4米。

  2、师指定50×50这种规格,让学生计算需要此种规格的地砖多少块。

  (估计学生都用“客厅地面面积÷每块地砖的面积=所需地砖的块数”这种方法计算)

  50×50=2500(平方厘米)=0.25(平方米)

  5×4=20(平方米)

  20÷0.25=80(块)

  80×8=640(元)

  师指定40*40这种规格,让学生计算需要此种规格的地砖多少块。

  40×40=1600(平方厘米)=0.16(平方米)

  5×4=20(平方米)

  20÷0.16=125(块)

  125×5=625(元)

  通过计算用40*40地转铺地更省钱

  三、活动小结,发散联想

  师:通过本节活动课你受到什么启发?在日常生活中(或在布置装饰家居时)还有哪些方面的计算要根据实际情况灵活运用所学知识进行计算?

  板书设计:

  估计学生都用“客厅地面面积÷每块地砖的面积=所需地砖的块数”这种方法计算)

  50×50=2500(平方厘米)=0.25(平方米)

  5×4=20(平方米)

  20÷0.25=80(块)

  80×8=640(元)

  师指定40*40这种规格,让学生计算需要此种规格的地砖多少块。

  40×40=1600(平方厘米)=0.16(平方米)

  5×4=20(平方米)

  20÷0.16=125(块)

  125×5=625(元)

  通过计算用40*40地转铺地更省钱

可能性教案 篇9

  学生在前几册教材中初步学习了收集、记录、分类整理信息以及用简单的表格或涂颜色的方块表示统计的结果,还在摸彩球、玩转盘、抛圆片等活动中初步体会了有些事情的发生是确定的,有些是不确定的,并能用可能不可能一定等词语描述生活中一些事件发生的可能性。本单元继续教学可能性,让学生体会事件中各种情况发生的可能性有时是相等的、有时是不相等的,学会用经常偶尔机会是相等的等词语来描述生活中一些事情发生的可能性。在教学可能性的时候,教材充分利用学生已有的统计知识,进一步提高统计能力。把可能性的教学与统计方法密切结合是本单元教材编写的一大亮点。

  1、第90~91页教学等可能性,即事件发生的过程中各种情况出现的机会是相等的。

  例题让学生玩摸球游戏,口袋里装了红球和黄球,这两种颜色球的个数相等,让学生在摸球活动中体验摸到红球的机会与摸到黄球的机会是相等的。例题首先明确游戏方法每次摸1个球,摸出以后把球放回口袋,一共摸40次。然后明确记录方法把每次摸到的颜色用画正字的方法记录在《摸球结果记录表》里,摸了40次以后,分别统计摸到红球、黄球的次数,填入《摸球结果统计表》里。例题还通过四个问题引导学生进行数学思考:任意摸1个球,可能是什么颜色估计一下,摸的40次里红球和黄球可能各摸到多少次统计的结果和你的估计差不多吗你发现了什么

  为了保证游戏结果的客观性,教学时要注意六点。

  (1) 每次任意摸1个球。学生应该在看不到球的颜色的情境中随意摸;把摸出的球放回口袋后,要用力把口袋抖动几次,使不同颜色的球在口袋里随意分布。

  (2) 摸的次数要多。因为摸的次数越多,摸到两种颜色的次数越可能接近。如果摸的次数太少,就不容易显示出可能性是相等的。例题要求摸40次,教学时只能多于40次,不能少。

  (3) 估计红球和黄球可能各摸到多少次时,要让学生在口袋里的红球和黄球个数相同的现实情境下,联系经验思考,不但要估计两种颜色的球可能各摸到的次数,而且说说为什么作出这样的估计。

  (4) 要指导学生记录。每次摸得什么颜色的球要随时记录,游戏结束后才能统计。学生以前用画的方法记录,现在用画正的方法记录,应该对学生讲讲画正字的方法,并让他们体会这种记录的好处。

  (5) 要组织学生交流。每组学生摸的40次里,一般不会两种颜色的球各20次,会一种颜色的次数稍多一些,另一种颜色的次数稍少一些,个案不容易反映出可能性相等。只有在各组的交流中,在对众多个案的'观察分析中,学生才能从两种颜色的次数差不多,体会机会是相等的。

  (6) 要组织学生反思。让学生想一想、说一说,为什么摸到的红球和黄球的次数差不多,并找到原因口袋里装的红球与黄球的个数是相等的。

  2、第92~93页教学事件发生的过程中,有些情况出现的机会多,有些情况出现的机会少,即可能性有大、有小。

  例题仍然让学生玩摸球游戏。口袋里装了3个黄球和1个红球,两种颜色球的个数不等。每次任意摸1个球,及时记录球的颜色,摸了10次以后统计哪种颜色的球摸到的次数多一些。游戏方法和数学思考与等可能性的例题基本相同,数学思考的线索仍然是现实情境猜想实验验证猜想分析原因。记录信息采用统计图,教材提供了两种统计图,左边一种是前几册中用过的方块图,右边一种把方格连成了条形,学生可以任选一种记录。通过这里两种记录的图,引导学生从认识的方块图过渡到认识条形图。

  游戏后组织学生交流要抓住三点。

  (1) 从结果想原因,体会可能性有大、有小。各组摸球的结果都是摸到黄球的次数多,摸到红球的次数少。要让学生想想、说说为什么。

  (2) 把两种统计图进行比较。围绕右边的统计图是怎样画的、表示什么意思,两种统计图有什么相同、有什么不同等问题让学生讨论,实现从方块图到条形图的过渡。

  (3) 把可能性相等与可能性不相等作比较。两道例题都是摸球,为什么前一道例题摸到黄球的次数与红球差不多,后一道例题摸到黄球的次数比红球多得多,让学生自己找到原因。

  3、两道例题的后面各有一次想想做做,都是两道题,两道题的思维方向虽然不同,但都能帮助学生加强对可能性的体验。

  其中第1题通过抛小正方体继续体会例题教学的可能性相等与可能性有大有小。第2题运用对可能性的认识先按照预设的结果在布袋里放铅笔,再通过摸铅笔活动验证有没有达到预期的要求,从而进一步理解可能性相等和可能性有大有小。

  练习九第1~3题分别联系天气情况、玩转盘以及生活中的事情引导学生用经常偶尔 可能性相等等词语形象地描述可能性的大小。

  4、第96~97页实践活动让学生在摸牌和下棋游戏中继续体会可能性相等与可能性有大有小。

  摸牌游戏,从四种花色的牌摸到的次数差不多,到红桃花色的牌摸得的次数比其他花色的牌明显多,能使学生感受由于条件变化会引起可能性的变化。

  下棋游戏的规则比较复杂。正方体上涂红色的面比涂黑色的面的个数多,红色面朝上在棋盘上走的格子比黑色面朝上走的格子少,最后结果是拿红棋的人经常获胜。分析原因,学生能从中获得很多感受,对可能性的大小有更多体会。

【可能性教案】相关文章:

《可能性》教案03-11

可能性教案01-31

可能性教案06-18

关于可能性教案11-25

可能性教案15篇01-31

关于可能性教案范文9篇04-09

可能性教案集锦九篇04-12

精选可能性教案模板十篇04-04

可能性教案模板集合10篇04-13

可能性教案合集七篇04-11